Create README.md
Browse files
    	
        README.md
    ADDED
    
    | 
         @@ -0,0 +1,205 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            license: other
         
     | 
| 3 | 
         
            +
            license_name: llm-jp-3-172b-instruct3-tou
         
     | 
| 4 | 
         
            +
            license_link: https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3/raw/main/LICENSE_ja
         
     | 
| 5 | 
         
            +
            language:
         
     | 
| 6 | 
         
            +
            - en
         
     | 
| 7 | 
         
            +
            - ja
         
     | 
| 8 | 
         
            +
            programming_language:
         
     | 
| 9 | 
         
            +
              - C
         
     | 
| 10 | 
         
            +
              - C++
         
     | 
| 11 | 
         
            +
              - C#
         
     | 
| 12 | 
         
            +
              - Go
         
     | 
| 13 | 
         
            +
              - Java
         
     | 
| 14 | 
         
            +
              - JavaScript
         
     | 
| 15 | 
         
            +
              - Lua
         
     | 
| 16 | 
         
            +
              - PHP
         
     | 
| 17 | 
         
            +
              - Python
         
     | 
| 18 | 
         
            +
              - Ruby
         
     | 
| 19 | 
         
            +
              - Rust
         
     | 
| 20 | 
         
            +
              - Scala
         
     | 
| 21 | 
         
            +
              - TypeScript
         
     | 
| 22 | 
         
            +
            pipeline_tag: text-generation
         
     | 
| 23 | 
         
            +
            library_name: transformers
         
     | 
| 24 | 
         
            +
            inference: false
         
     | 
| 25 | 
         
            +
            ---
         
     | 
| 26 | 
         
            +
            # llm-jp-3-172b-instruct3
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            This repository provides large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/).
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            The development was partially supported by [GENIAC](https://www.meti.go.jp/policy/mono_info_service/geniac/index.html).
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            | Model Variants | 
         
     | 
| 33 | 
         
            +
            | :--- |
         
     | 
| 34 | 
         
            +
            | [llm-jp-3-1.8b](https://huggingface.co/llm-jp/llm-jp-3-1.8b) |
         
     | 
| 35 | 
         
            +
            | [llm-jp-3-1.8b-instruct](https://huggingface.co/llm-jp/llm-jp-3-1.8b-instruct) |
         
     | 
| 36 | 
         
            +
            | [llm-jp-3-3.7b](https://huggingface.co/llm-jp/llm-jp-3-3.7b) |
         
     | 
| 37 | 
         
            +
            | [llm-jp-3-3.7b-instruct](https://huggingface.co/llm-jp/llm-jp-3-3.7b-instruct) |
         
     | 
| 38 | 
         
            +
            | [llm-jp-3-13b](https://huggingface.co/llm-jp/llm-jp-3-13b) |
         
     | 
| 39 | 
         
            +
            | [llm-jp-3-13b-instruct](https://huggingface.co/llm-jp/llm-jp-3-13b-instruct) |
         
     | 
| 40 | 
         
            +
            | [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) |
         
     | 
| 41 | 
         
            +
            | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) |
         
     | 
| 42 | 
         
            +
            | [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) |
         
     | 
| 43 | 
         
            +
            | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) |
         
     | 
| 44 | 
         
            +
            | [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) |
         
     | 
| 45 | 
         
            +
            | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) |
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            Checkpoints format: Hugging Face Transformers
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            ## Required Libraries and Their Versions
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            - torch>=2.3.0
         
     | 
| 54 | 
         
            +
            - transformers>=4.40.1
         
     | 
| 55 | 
         
            +
            - tokenizers>=0.19.1
         
     | 
| 56 | 
         
            +
            - accelerate>=0.29.3
         
     | 
| 57 | 
         
            +
            - flash-attn>=2.5.8
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            ## Usage
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            ```python
         
     | 
| 62 | 
         
            +
            import torch
         
     | 
| 63 | 
         
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         
     | 
| 64 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-172b-instruct3")
         
     | 
| 65 | 
         
            +
            model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-172b-instruct3", device_map="auto", torch_dtype=torch.bfloat16)
         
     | 
| 66 | 
         
            +
            chat = [
         
     | 
| 67 | 
         
            +
                {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"},
         
     | 
| 68 | 
         
            +
                {"role": "user", "content": "自然言語処理とは何か"},
         
     | 
| 69 | 
         
            +
            ]
         
     | 
| 70 | 
         
            +
            tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device)
         
     | 
| 71 | 
         
            +
            with torch.no_grad():
         
     | 
| 72 | 
         
            +
                output = model.generate(
         
     | 
| 73 | 
         
            +
                    tokenized_input,
         
     | 
| 74 | 
         
            +
                    max_new_tokens=100,
         
     | 
| 75 | 
         
            +
                    do_sample=True,
         
     | 
| 76 | 
         
            +
                    top_p=0.95,
         
     | 
| 77 | 
         
            +
                    temperature=0.7,
         
     | 
| 78 | 
         
            +
                    repetition_penalty=1.05,
         
     | 
| 79 | 
         
            +
                )[0]
         
     | 
| 80 | 
         
            +
            print(tokenizer.decode(output))
         
     | 
| 81 | 
         
            +
            ```
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            ## Model Details
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            - **Model type:** Transformer-based Language Model
         
     | 
| 87 | 
         
            +
            - **Total seen tokens:**:
         
     | 
| 88 | 
         
            +
              - llm-jp-3-1.8b: 2.1T
         
     | 
| 89 | 
         
            +
              - llm-jp-3-3.7b: 2.1T
         
     | 
| 90 | 
         
            +
              - llm-jp-3-13b: 2.1T
         
     | 
| 91 | 
         
            +
              - llm-jp-3-172b-beta1: 0.7T
         
     | 
| 92 | 
         
            +
              - llm-jp-3-172b-beta2: 1.4T
         
     | 
| 93 | 
         
            +
              - llm-jp-3-172b: 2.1T
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters|
         
     | 
| 96 | 
         
            +
            |:---:|:---:|:---:|:---:|:---:|:---:|:---:|
         
     | 
| 97 | 
         
            +
            |1.8b|24|2048|16|4096|407,498,752|1,459,718,144|
         
     | 
| 98 | 
         
            +
            |3.7b|28|3072|24|4096|611,248,128|3,171,068,928|
         
     | 
| 99 | 
         
            +
            |13b|40|5120|40|4096|1,018,746,880|12,688,184,320|
         
     | 
| 100 | 
         
            +
            |172b|96|12288|96|4096|2,444,992,512|169,947,181,056|
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
            ## Tokenizer
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model.
         
     | 
| 106 | 
         
            +
            The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2).
         
     | 
| 107 | 
         
            +
            Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary).
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            ## Datasets
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            ### Pre-training
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            The models have been pre-trained using a blend of the following datasets.
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            | Language | Dataset | Tokens|
         
     | 
| 116 | 
         
            +
            |:---|:---|---:|
         
     | 
| 117 | 
         
            +
            |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B
         
     | 
| 118 | 
         
            +
            ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B
         
     | 
| 119 | 
         
            +
            ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B
         
     | 
| 120 | 
         
            +
            ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B
         
     | 
| 121 | 
         
            +
            ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B
         
     | 
| 122 | 
         
            +
            |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B
         
     | 
| 123 | 
         
            +
            ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B
         
     | 
| 124 | 
         
            +
            ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B
         
     | 
| 125 | 
         
            +
            ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B
         
     | 
| 126 | 
         
            +
            ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B
         
     | 
| 127 | 
         
            +
            ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B
         
     | 
| 128 | 
         
            +
            ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B
         
     | 
| 129 | 
         
            +
            |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B
         
     | 
| 130 | 
         
            +
            |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B
         
     | 
| 131 | 
         
            +
            |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            ### Post-training
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
            We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization.
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            #### Supervised Fine-tuning
         
     | 
| 138 | 
         
            +
            The datasets used for supervised fine-tuning are as follows:
         
     | 
| 139 | 
         
            +
             
         
     | 
| 140 | 
         
            +
            | Language | Dataset | Description |
         
     | 
| 141 | 
         
            +
            |:---|:---|:---|
         
     | 
| 142 | 
         
            +
            |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset. |
         
     | 
| 143 | 
         
            +
            |        |[answer-carefully-002](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed instruction dataset focusing on LLMs' safety. |
         
     | 
| 144 | 
         
            +
            |        |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | 
         
     | 
| 145 | 
         
            +
            |        |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. |
         
     | 
| 146 | 
         
            +
            |        |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. |
         
     | 
| 147 | 
         
            +
            |        |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. We used a sampled subset. |
         
     | 
| 148 | 
         
            +
            |        |[wizardlm8x22b-logical-math-coding-sft_additional-ja](https://huggingface.co/datasets/kanhatakeyama/wizardlm8x22b-logical-math-coding-sft_additional-ja)| A synthetic instruction dataset. We used a sampled subset. |
         
     | 
| 149 | 
         
            +
            |        |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. |
         
     | 
| 150 | 
         
            +
            |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | 
         
     | 
| 151 | 
         
            +
            |        |[FLAN](https://huggingface.co/datasets/Open-Orca/FLAN) | We used a sampled subset. |
         
     | 
| 152 | 
         
            +
            |Japanese & English|[Synthetic-JP-EN-Coding-Dataset-567k](https://huggingface.co/datasets/Aratako/Synthetic-JP-EN-Coding-Dataset-567k)| A synthetic instruction dataset. We used a sampled subset. |
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
            #### Direct Preference Optimization
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            We used synthetic preference data to improve both the helpfulness and harmlessness of the LLM. The datasets will be made available soon.
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            ## Evaluation
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            ### llm-jp-eval (v1.4.1)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            We evaluated the models using 100 examples from the dev split. Note that we skipped the CG (Code Generation) task.
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            | Model name | average | EL | FA | HE | MC | MR | MT | NLI | QA | RC | SUM |
         
     | 
| 166 | 
         
            +
            | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 
         
     | 
| 167 | 
         
            +
            | [llm-jp-3-172b-beta1](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1) | 0.5174 | 0.4460 | 0.2556 | 0.3700 | 0.6400 | 0.6100 | 0.8265 | 0.5600 | 0.5720 | 0.8505 | 0.0434 |
         
     | 
| 168 | 
         
            +
            | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 0.5700 | 0.4306 | 0.2292 | 0.4350 | 0.8433 | 0.6200 | 0.8228 | 0.6820 | 0.5873 | 0.8964 | 0.1529 |
         
     | 
| 169 | 
         
            +
            | [llm-jp-3-172b-beta2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2) | 0.5422 | 0.3337 | 0.2725 | 0.4700 | 0.7767 | 0.6900 | 0.8283 | 0.5960 | 0.6133 | 0.8380 | 0.0037 |
         
     | 
| 170 | 
         
            +
            | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 0.6022 | 0.5470 | 0.2665 | 0.5100 | 0.8600 | 0.7000 | 0.8392 | 0.6800 | 0.6346 | 0.8770 | 0.1076 |
         
     | 
| 171 | 
         
            +
            | [llm-jp-3-172b](https://huggingface.co/llm-jp/llm-jp-3-172b) | 0.5431 | 0.4077 | 0.2662 | 0.5150 | 0.7633 | 0.6700 | 0.8227 | 0.5740 | 0.5686 | 0.8289 | 0.0148 |
         
     | 
| 172 | 
         
            +
            | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-172b-instruct3) | 0.6130 | 0.5173 | 0.2711 | 0.5700 | 0.8733 | 0.7300 | 0.8437 | 0.7280 | 0.6012 | 0.8829 | 0.1121 |
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
            ### Japanese MT Bench
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            We evaluated the models using `gpt-4-0613`. Please see the [codes](https://github.com/wandb/llm-leaderboard/tree/g-leaderboard) for details.
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
            | Model name | average | coding | extraction | humanities | math | reasoning | roleplay | stem | writing |
         
     | 
| 181 | 
         
            +
            | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
         
     | 
| 182 | 
         
            +
            | [llm-jp-3-172b-beta1-instruct](https://huggingface.co/llm-jp/llm-jp-3-172b-beta1-instruct) | 5.14 | 2.90 | 5.30 | 8.80 | 2.15 | 2.45 | 6.95 | 7.45 | 5.15 | 
         
     | 
| 183 | 
         
            +
            | [llm-jp-3-172b-beta2-instruct2](https://huggingface.co/llm-jp/llm-jp-3-172b-beta2-instruct2) | 6.72 | 4.10 | 6.90 | 7.60 | 4.00 | 6.35 | 8.70 | 7.95 | 8.15 |
         
     | 
| 184 | 
         
            +
            | [llm-jp-3-172b-instruct3](https://huggingface.co/llm-jp/llm-jp-3-beta2-instruct3) | 7.57 | 4.85 | 8.55 | 9.56 | 3.75 | 7.6 | 8.1 | 8.95 | 9.2 |
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            ## Risks and Limitations
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
            The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            ## Send Questions to
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            llm-jp(at)nii.ac.jp
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            ## License
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
            See the [LICENSE](LICENSE_ja) file.
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
            ## Model Card Authors
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
            *The names are listed in alphabetical order.*
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
            Hirokazu Kiyomaru and Takashi Kodama.
         
     |