from transformers import AutoConfig, AutoModel from transformers import PreTrainedModel, PretrainedConfig import torch.nn as nn import torch class ArchitectureConfig(PretrainedConfig): model_type = "architecture" def __init__(self, **kwargs): super().__init__(**kwargs) self.input_size = kwargs.get("input_size", 9) self.hidden_size_1 = kwargs.get("hidden_size_1", 9) self.hidden_size_2 = kwargs.get("hidden_size_2", 9) self.hidden_size_3 = kwargs.get("hidden_size_3", 9) self.hidden_size_4 = kwargs.get("hidden_size_4", 9) self.hidden_size_5 = kwargs.get("hidden_size_5", 9) self.hidden_size_6 = kwargs.get("hidden_size_6", 9) self.hidden_size_7 = kwargs.get("hidden_size_7", 9) self.output_size = kwargs.get("output_size", 9) class Architecture(PreTrainedModel): config_class = ArchitectureConfig def __init__(self, config: ArchitectureConfig): super().__init__(config) self.input_size = config.input_size self.hidden_size_1 = config.hidden_size_1 self.hidden_size_2 = config.hidden_size_2 self.hidden_size_3 = config.hidden_size_3 self.hidden_size_4 = config.hidden_size_4 self.hidden_size_5 = config.hidden_size_5 self.hidden_size_6 = config.hidden_size_6 self.hidden_size_7 = config.hidden_size_7 self.output_size = config.output_size self.fc1 = nn.Linear(self.input_size, self.hidden_size_1) self.fc2 = nn.Linear(self.hidden_size_1, self.hidden_size_2) self.fc3 = nn.Linear(self.hidden_size_2, self.hidden_size_3) self.fc4 = nn.Linear(self.hidden_size_3, self.hidden_size_4) self.fc5 = nn.Linear(self.hidden_size_4, self.hidden_size_5) self.fc6 = nn.Linear(self.hidden_size_5, self.hidden_size_6) self.fc7 = nn.Linear(self.hidden_size_6, self.hidden_size_7) self.fc8 = nn.Linear(self.hidden_size_7, self.output_size) self.relu = nn.ReLU() def forward(self, x): x1 = self.relu(self.fc1(x)) x2 = self.relu(self.fc2(x1)) x3 = self.relu(self.fc3(x2)) x4 = self.relu(self.fc4(x3)) x5 = self.relu(self.fc5(x4)) x6 = self.relu(self.fc6(x5)) x7 = self.relu(self.fc7(x6)) x8 = self.fc8(x7) return x8 def inference(self, x): return self.forward(x) # Loading the model from saved weights def load_model(): AutoConfig.register("architecture", ArchitectureConfig) AutoModel.register(ArchitectureConfig, Architecture) config = ArchitectureConfig() model = Architecture(config) model.load_state_dict(torch.load('./model_weights.pth')) return model load_model()