File size: 6,436 Bytes
9d524af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b46b06b
9d524af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import csv


class Architecture(nn.Module):
    def __init__(self) -> None:
        super(Architecture, self).__init__()
        self.input_size = 9
        self.hidden_size_1 = 9
        self.hidden_size_2 = 9
        self.hidden_size_3 = 9
        self.hidden_size_4 = 9
        self.hidden_size_5 = 9
        self.hidden_size_6 = 9
        self.hidden_size_7 = 9
        self.output_size = 9

        self.fc1 = nn.Linear(self.input_size, self.hidden_size_1)
        self.fc2 = nn.Linear(self.hidden_size_1, self.hidden_size_2)
        self.fc3 = nn.Linear(self.hidden_size_2, self.hidden_size_3)
        self.fc4 = nn.Linear(self.hidden_size_3, self.hidden_size_4)
        self.fc5 = nn.Linear(self.hidden_size_4, self.hidden_size_5)
        self.fc6 = nn.Linear(self.hidden_size_5, self.hidden_size_6)
        self.fc7 = nn.Linear(self.hidden_size_6, self.hidden_size_7)
        self.fc8 = nn.Linear(self.hidden_size_7, self.output_size)

        self.loss = nn.CrossEntropyLoss()
        self.relu = nn.ReLU()

    def inference(self, x):
        with torch.no_grad():
            x1 = self.relu(self.fc1(x))
            x2 = self.relu(self.fc2(x1))
            x3 = self.relu(self.fc3(x2))
            x4 = self.relu(self.fc4(x3))
            x5 = self.relu(self.fc5(x4))
            x6 = self.relu(self.fc6(x5))
            x7 = self.relu(self.fc7(x6))
            x8 = self.fc8(x7)
        return x8

def load_model():
    model = Architecture()
    model.load_state_dict(torch.load('./model_weights.pth'))
    return model

def inference_model(model, input):
    return model.inference(input)

def minimax(board, depth, is_maximizing):
    if check_winner(board) == 2:  # AI wins
        return 1
    if check_winner(board) == 1:  # Human wins
        return -1
    if check_winner(board) == 3:  # Draw
        return 0
    
    if is_maximizing:
        best_score = -math.inf
        for i in range(9):
            if board[i] == 0:
                board[i] = 2  # AI's move
                score = minimax(board, depth + 1, False)
                board[i] = 0
                best_score = max(score, best_score)
        return best_score
    else:
        best_score = math.inf
        for i in range(9):
            if board[i] == 0:
                board[i] = 1  # Human's move
                score = minimax(board, depth + 1, True)
                board[i] = 0
                best_score = min(score, best_score)
        return best_score

def best_move_minimax(board):
    best_score = -math.inf
    move = None
    for i in range(9):
        if board[i] == 0:
            board[i] = 2  # AI's move
            score = minimax(board, 0, False)
            board[i] = 0
            if score > best_score:
                best_score = score
                move = i
    return move

def oracle(board, position):
    output_board = [0] * 9
    output_board[position] = 2

    # Get minimax prediction
    minimax_move = best_move_minimax(board)

    # Compare oracle's move with minimax prediction
    if minimax_move == position:
        return 1  # Predictions match
    else:
        return -1  # Predictions differ


def print_in_csv(board, position, comparison_result):
    output_board = [0] * 9
    output_board[position] = 2
    with open('game_state.csv', 'a', newline='') as f:
        writer = csv.writer(f)
        writer.writerow([
            ','.join(map(str, board)),
            ','.join(map(str, output_board)),
            comparison_result
        ])

def decode_prediction(prediction, board):
    result = torch.argmax(prediction)
    position = result.item()
    comparison_result = oracle(board, position)
    print(f'Oracle comparison result: {comparison_result}')
    print_in_csv(board, position, comparison_result)
    board[position] = 2
    return board

def encode_input(input):
    return torch.tensor(input, dtype=torch.float32)


def play():
    model = load_model()
    model.eval()
    print(model.inference(torch.randn(9)))


def print_board(board):
    
    visual_board = [' ' if x == 0 else 'X' if x == 1 else 'O' for x in board]

    print(f'{visual_board[0]} | {visual_board[1]} | {visual_board[2]}')
    print('---------')
    print(f'{visual_board[3]} | {visual_board[4]} | {visual_board[5]}')
    print('---------')
    print(f'{visual_board[6]} | {visual_board[7]} | {visual_board[8]}')
    print('---------')


def check_winner(board):
    # Check rows
    for i in range(0, 9, 3):
        if board[i] == board[i + 1] == board[i + 2] == 1:
            return 1
        if board[i] == board[i + 1] == board[i + 2] == 2:
            return 2

    # Check columns
    for i in range(3):
        if board[i] == board[i + 3] == board[i + 6] == 1:
            return 1
        if board[i] == board[i + 3] == board[i + 6] == 2:
            return 2

    # Check diagonals
    if board[0] == board[4] == board[8] == 1:
        return 1
    if board[0] == board[4] == board[8] == 2:
        return 2

    if board[2] == board[4] == board[6] == 1:
        return 1
    if board[2] == board[4] == board[6] == 2:
        return 2

    # Check for a draw
    if all(cell != 0 for cell in board):
        return 3

    return 0


def simulate_game():

    board = [0, 0, 0, 0, 0, 0, 0, 0, 0]
    end = False

    while end != True:
        print_board(board)
        move = int(input('Enter move: '))
        if move <= 9 and move >= 1 and board[move - 1] == 0:
            board[move - 1] = 1
            print_board(board)
            if check_winner(board) == 1:
                print('You win')
                end = True
                break
            if check_winner(board) == 3:
                print('Draw')
                end = True
                break
            print('Computer is thinking...')
            intput = encode_input(board)
            model = load_model()
            prediction = inference_model(model, intput)
            output = decode_prediction(prediction, board)
            board = output
            if check_winner(board) == 2:
                print_board(board)
                print('Computer wins')
                end = True
                break
            if check_winner(board) == 3:
                print('Draw')
                end = True
                break

        else:
            print('Invalid move')


if __name__ == '__main__':
    simulate_game()