# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. # References: # https://github.com/facebookresearch/dino/blob/master/vision_transformer.py # https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py import logging import os import warnings import torch from torch import Tensor from torch import nn logger = logging.getLogger("dinov2") # try: # from flash_attn.flash_attention import FlashAttention # is_flash_attn_available = True # except ModuleNotFoundError: # is_flash_attn_available = False XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import memory_efficient_attention, unbind XFORMERS_AVAILABLE = True warnings.warn("xFormers is available (Attention)") else: warnings.warn("xFormers is disabled (Attention)") raise ImportError except ImportError: XFORMERS_AVAILABLE = False warnings.warn("xFormers is not available (Attention)") class Attention(nn.Module): def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, attn_drop: float = 0.0, proj_drop: float = 0.0, ) -> None: super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim, bias=proj_bias) self.proj_drop = nn.Dropout(proj_drop) # if is_flash_attn_available: # self.attn_func = FlashAttention(softmax_scale=self.scale, attention_dropout=attn_drop) def forward(self, x: Tensor) -> Tensor: # old = self.old_attn(x) # # if is_flash_attn_available: # x = self.flash_attn(x) # else: # x = self.old_attn(x) # print(f'attn diff: {(old - x).abs().max().item()}') B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def old_attn(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = q @ k.transpose(-2, -1) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) return x # def flash_attn(self, x): # B, N, C = x.shape # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) # return self.attn_func(qkv.to(torch.float16))[0].to(torch.float32).reshape(B, N, C) class MemEffAttention(Attention): def forward(self, x: Tensor, attn_bias=None) -> Tensor: if not XFORMERS_AVAILABLE: if attn_bias is not None: raise AssertionError("xFormers is required for using nested tensors") return super().forward(x) B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) q, k, v = unbind(qkv, 2) x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) x = x.reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x