hydra: run: dir: ${output_dir} output_subdir: ${output_dir}/code/hydra # Store hydra's config breakdown here for debugging searchpath: # Only <exp_dir> in these paths are discoverable - det_map/config/defaults - det_map/config - det_map/config/splits - det_map/config/agent # - pkg://navsim.planning.script.config.training defaults: - default_common - default_evaluation - default_train_val_test_log_split - agent: map_agent - scene_filter: det_all_scenes split: mini dataloader: params: batch_size: 32 # number of samples per batch num_workers: 4 # number of workers for data loading pin_memory: true # pin memory for faster GPU transfer prefetch_factor: 1 trainer: params: max_epochs: 20 # maximum number of training epochs check_val_every_n_epoch: 1 # run validation set every n training epochs val_check_interval: 1.0 # [%] run validation set every X% of training set limit_train_batches: 1.0 # how much of training dataset to check (float = fraction, int = num_batches) limit_val_batches: 1.0 # how much of validation dataset to check (float = fraction, int = num_batches) accelerator: gpu # distribution method strategy: ddp precision: 32 # floating point precision num_nodes: 1 # Number of nodes used for training num_sanity_val_steps: 0 # number of validation steps to run before training begins fast_dev_run: false # runs 1 batch of train/val/test for sanity accumulate_grad_batches: 1 # accumulates gradients every n batches # track_grad_norm: -1 # logs the p-norm for inspection gradient_clip_val: 0.0 # value to clip gradients gradient_clip_algorithm: norm # [value, norm] method to clip gradients