import os import pickle from typing import Any, Union import copy import numpy as np from pytorch_lightning.callbacks import ModelCheckpoint from torch.optim import Optimizer from torch.optim.lr_scheduler import LRScheduler from navsim.agents.hydra.hydra_config import HydraConfig from navsim.agents.hydra.hydra_features import HydraFeatureBuilder, HydraTargetBuilder from navsim.agents.hydra.hydra_loss_fn import hydra_kd_imi_agent_loss, hydra_kd_imi_agent_loss_one2many, hydra_loss from navsim.agents.hydra.hydra_model_pe import HydraModelPE from navsim.agents.hydra.hydra_model_pe_det import HydraDetModelPE from navsim.agents.hydra.hydra_model_pe_one2many import HydraModelPE_many from navsim.agents.vadv2.vadv2_config import Vadv2Config from navsim.agents.vadv2.vadv2_features import ( Vadv2FeatureBuilder, Vadv2TargetBuilder, ) from navsim.agents.vadv2.vadv2_loss import vadv2_loss_pdm_w_progress from navsim.agents.vadv2.vadv2_pdm_model_progress import Vadv2ModelPDMProgress from navsim.common.dataclasses import SensorConfig from navsim.planning.training.abstract_feature_target_builder import ( AbstractFeatureBuilder, AbstractTargetBuilder, ) DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT') TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT') from typing import Dict, List import pytorch_lightning as pl import torch from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling from navsim.agents.abstract_agent import AbstractAgent from navsim.common.dataclasses import Trajectory class HydraAgentPE_many(AbstractAgent): def __init__( self, config: HydraConfig, lr: float, checkpoint_path: str = None, pdm_split=None, metrics=None, ): super().__init__() config.trajectory_pdm_weight = { 'noc': 3.0, 'da': 3.0, 'ttc': 2.0, 'progress': config.progress_weight, 'comfort': 1.0, } self._config = config self._lr = lr self.metrics = metrics self._checkpoint_path = checkpoint_path self.vadv2_model = HydraModelPE_many(config) self.vocab_size = config.vocab_size self.backbone_wd = config.backbone_wd new_pkl_dir = f'vocab_score_full_{self.vocab_size}_navtrain' self.vocab_pdm_score_full = pickle.load( open(f'{TRAJ_PDM_ROOT}/{new_pkl_dir}/{pdm_split}.pkl', 'rb')) def name(self) -> str: """Inherited, see superclass.""" return self.__class__.__name__ def initialize(self) -> None: """Inherited, see superclass.""" # if torch.cuda.is_available(): # state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"] # else: # state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))[ # "state_dict"] state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"] self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()}) def get_sensor_config(self) -> SensorConfig: """Inherited, see superclass.""" return SensorConfig( cam_f0=[0, 1, 2, 3], cam_l0=[0, 1, 2, 3], cam_l1=[0, 1, 2, 3], cam_l2=[0, 1, 2, 3], cam_r0=[0, 1, 2, 3], cam_r1=[0, 1, 2, 3], cam_r2=[0, 1, 2, 3], cam_b0=[0, 1, 2, 3], lidar_pc=[], ) def get_target_builders(self) -> List[AbstractTargetBuilder]: return [HydraTargetBuilder(config=self._config)] def get_feature_builders(self) -> List[AbstractFeatureBuilder]: return [HydraFeatureBuilder(config=self._config)] def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: return self.vadv2_model(features, None, False) def forward_train(self, features, interpolated_traj): return self.vadv2_model(features, interpolated_traj, True) def compute_loss( self, features: Dict[str, torch.Tensor], targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], tokens=None ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: # get the pdm score by tokens scores = {} for k in self.metrics: tmp = [self.vocab_pdm_score_full[token][k][None] for token in tokens] scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0)) .to(predictions['trajectory'].device)) return hydra_loss(targets, predictions, self._config, scores) def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]: backbone_params_name = '_backbone.image_encoder' img_backbone_params = list( filter(lambda kv: backbone_params_name in kv[0], self.vadv2_model.named_parameters())) default_params = list(filter(lambda kv: backbone_params_name not in kv[0], self.vadv2_model.named_parameters())) params_lr_dict = [ {'params': [tmp[1] for tmp in default_params]}, { 'params': [tmp[1] for tmp in img_backbone_params], 'lr': self._lr * self._config.lr_mult_backbone, 'weight_decay': self.backbone_wd } ] return torch.optim.Adam(params_lr_dict, lr=self._lr) def get_training_callbacks(self) -> List[pl.Callback]: return [ # TransfuserCallback(self._config), ModelCheckpoint( save_top_k=30, monitor="val/loss_epoch", mode="min", dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/", filename="{epoch:02d}-{step:04d}", ) ]