agent="hydra_pe_temporal" # train without cache, good for debugging model cache=null # run cache_dataset.sh first, good for training #cache="your cache path" # use navtrain : train split config="default_training" # use navtrain : train split + val split #config="competition_training" bs=8 lr=0.0001 epoch=20 dir=${agent}_ckpt # ##git pull; #python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ # --config-name $config \ # agent=$agent \ # ~trainer.params.strategy \ # experiment_name=$dir \ # cache_path=null\ # agent.config.ckpt_path=$dir \ # split=trainval \ # trainer.params.max_epochs=$epoch \ # dataloader.params.batch_size=$bs \ # agent.lr=$lr \ # scene_filter=navtrain #agent="hydra_pe" #bs=8 #lr=0.0001 #cache=null #resume="epoch19.ckpt" #config="competition_training" #sync_bn=False #epoch=25 #replicas=8 #dir=${agent}_vov_sine_bs${bs}x${replicas}_ckpt #python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ # --config-name $config \ # agent=$agent \ # +resume_ckpt_path=\${NAVSIM_EXP_ROOT}/$dir/$resume \ # trainer.params.num_nodes=$replicas \ # trainer.params.max_epochs=$epoch \ # +trainer.params.sync_batchnorm=$sync_bn \ # ~trainer.params.strategy \ # dataloader.params.batch_size=$bs \ # experiment_name=$dir \ # cache_path=$cache \ # agent.config.ckpt_path=$dir \ # agent.lr=$lr \ # split=trainval \ # scene_filter=navtrain; #git pull; python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ --config-name=tiny_training \ cache_path=null \ experiment_name=debug \ agent.config.ckpt_path=debug \ agent=hydra_pe_temporal \ agent.pdm_split=tiny \ split=tiny \ scene_filter=navtiny \ dataloader.params.batch_size=2 \ dataloader.params.num_workers=0 \ dataloader.params.pin_memory=false \ dataloader.params.prefetch_factor=null \ ~trainer.params.strategy