agent="hydra_pe" cache="null" bs=32 lr=0.0002 epoch=20 config="competition_training" dir=${agent}_lr2_ckpt ngc batch run \ -in dgx1v.32g.8.norm \ --ace nv-us-west-2 \ --label _wl___computer_vision \ -n ml-model.lkl_train._wl___computer_vision \ --result /result \ -i nvcr.io/nvidian/swaiinf/lzx-navsim \ --workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ --port 6007 \ --commandline " git pull; pip install --upgrade diffusers[torch]; python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ --config-name $config \ agent=$agent \ experiment_name=$dir \ agent.config.ckpt_path=$dir \ +agent.config.backbone_wd=$wd \ agent.lr=$lr \ cache_path=$cache \ dataloader.params.batch_size=$bs \ ~trainer.params.strategy \ trainer.params.max_epochs=$epoch \ split=trainval \ scene_filter=navtrain"