import os import pickle from typing import Any, Union import numpy as np from pytorch_lightning.callbacks import ModelCheckpoint from torch.optim import Optimizer from torch.optim.lr_scheduler import LRScheduler from navsim.agents.vadv2.vadv2_config import Vadv2Config from navsim.agents.vadv2.vadv2_features import ( Vadv2FeatureBuilder, Vadv2TargetBuilder, ) from navsim.agents.vadv2.vadv2_loss import vadv2_loss_pdm_w_progress from navsim.agents.vadv2.vadv2_pdm_model_progress import Vadv2ModelPDMProgress from navsim.common.dataclasses import SensorConfig from navsim.planning.training.abstract_feature_target_builder import ( AbstractFeatureBuilder, AbstractTargetBuilder, ) DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT') TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT') from typing import Dict, List import pytorch_lightning as pl import torch from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling from navsim.agents.abstract_agent import AbstractAgent from navsim.common.dataclasses import Trajectory class Vadv2AgentPDMProgress(AbstractAgent): def __init__( self, config: Vadv2Config, lr: float, checkpoint_path: str = None, pdm_split=None, metrics=None, ): super().__init__() config.trajectory_pdm_weight = { 'noc': 3.0, 'da': 3.0, 'ttc': 2.0, 'progress': config.progress_weight, 'comfort': 1.0, } self._config = config self._lr = lr self.metrics = metrics self._checkpoint_path = checkpoint_path self.vadv2_model = Vadv2ModelPDMProgress(config) self.vocab_size = config.vocab_size self.backbone_wd = config.backbone_wd new_pkl_dir = f'vocab_score_full_{self.vocab_size}_navtrain' self.vocab_pdm_score_full = pickle.load( open(f'{TRAJ_PDM_ROOT}/{new_pkl_dir}/{pdm_split}.pkl', 'rb')) def name(self) -> str: """Inherited, see superclass.""" return self.__class__.__name__ def initialize(self) -> None: """Inherited, see superclass.""" # if torch.cuda.is_available(): # state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"] # else: # state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))[ # "state_dict"] state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"] self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()}) def get_sensor_config(self) -> SensorConfig: """Inherited, see superclass.""" return SensorConfig.build_mm_sensors() def get_target_builders(self) -> List[AbstractTargetBuilder]: return [Vadv2TargetBuilder(config=self._config)] def get_feature_builders(self) -> List[AbstractFeatureBuilder]: return [Vadv2FeatureBuilder(config=self._config)] def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: return self.vadv2_model(features) def forward_train(self, features, interpolated_traj): return self.vadv2_model(features, interpolated_traj) def compute_loss( self, features: Dict[str, torch.Tensor], targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], tokens=None ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: # get the pdm score by tokens scores = {} for k in self.metrics: tmp = [self.vocab_pdm_score_full[token][k][None] for token in tokens] scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0)) .to(predictions['trajectory'].device)) return vadv2_loss_pdm_w_progress(targets, predictions, self._config, scores) def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]: if self._config.backbone_type == 'moe': backbone_params_eva = '_backbone.image_encoder.eva' backbone_params_da = '_backbone.image_encoder.davit' img_backbone_params = list( filter(lambda kv: backbone_params_eva in kv[0] or backbone_params_da in kv[0], self.vadv2_model.named_parameters()) ) default_params = list(filter(lambda kv: backbone_params_da not in kv[0] and backbone_params_eva not in kv[0], self.vadv2_model.named_parameters())) params_lr_dict = [ {'params': [tmp[1] for tmp in default_params]}, { 'params': [tmp[1] for tmp in img_backbone_params], 'lr': self._lr * self._config.lr_mult_backbone, 'weight_decay': self.backbone_wd } ] return torch.optim.Adam(params_lr_dict, lr=self._lr) backbone_params_name = '_backbone.image_encoder' img_backbone_params = list( filter(lambda kv: backbone_params_name in kv[0], self.vadv2_model.named_parameters())) default_params = list(filter(lambda kv: backbone_params_name not in kv[0], self.vadv2_model.named_parameters())) params_lr_dict = [ {'params': [tmp[1] for tmp in default_params]}, { 'params': [tmp[1] for tmp in img_backbone_params], 'lr': self._lr * self._config.lr_mult_backbone, 'weight_decay': self.backbone_wd } ] return torch.optim.Adam(params_lr_dict, lr=self._lr) def get_training_callbacks(self) -> List[pl.Callback]: return [ # TransfuserCallback(self._config), ModelCheckpoint( save_top_k=30, monitor="val/loss_epoch", mode="min", dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/", filename="{epoch:02d}-{step:04d}", ) ] def compute_trajectory(self, agent_input): """ Submission """ self.eval() features: Dict[str, torch.Tensor] = {} # build features for builder in self.get_feature_builders(): features.update(builder.compute_features(agent_input)) # add batch dimension features = {k: v.unsqueeze(0).cuda() for k, v in features.items()} vocab = self.vadv2_model._trajectory_head.vocab self.vadv2_model = self.vadv2_model.cuda() # forward pass with torch.no_grad(): predictions = self.vadv2_model(features) imis = predictions["imi"].softmax(-1).log().cpu().numpy() nocs = predictions["noc"].log().cpu().numpy() das = predictions["da"].log().cpu().numpy() ttcs = predictions["ttc"].log().cpu().numpy() comforts = predictions["comfort"].log().cpu().numpy() progresses = predictions["progress"].log().cpu().numpy() imi_weight = 0.1 noc_weight = 0.25 da_weight = 2.0 ttc_weight = 3.0 progress_weight = 5.0 comfort_weight = 1.0 tpc_weight = 2.25 # A temporary trajectory for choosing the best epoch -> for grid search score = ( imi_weight * imis + noc_weight * nocs + da_weight * das + tpc_weight * ( ttc_weight * ttcs + comfort_weight * comforts + progress_weight * progresses ) )[0].argmax(0) traj = vocab[score].cpu().numpy() return Trajectory(traj, TrajectorySampling(time_horizon=4, interval_length=0.1))