agent="vadv2_4096_pdm_rel_extra" # cache="navtrain_vadv2_4f_cache" cache="navtrain_vadv2+map_img256x1024_cache" bs=32 lr=0.0001 ngc batch run \ -in dgx1v.32g.8.norm \ --ace nv-us-west-2 \ --label _wl___computer_vision \ -n ml-model.lzx_train._wl___computer_vision \ --result /result \ -i nvcr.io/nvidian/swaiinf/lzx-navsim \ --workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ --port 6007 \ --commandline " git pull; python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ agent=$agent \ experiment_name=${agent}_ckpt \ cache_path=\${NAVSIM_EXP_ROOT}/$cache \ agent.config.ckpt_path=${agent}_ckpt \ split=trainval \ dataloader.params.batch_size=$bs \ agent.lr=$lr \ scene_filter=navtrain"