navsim_ours / navsim /agents /vadv2 /vadv2_agent.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
import os
import pickle
from typing import Any, List, Dict, Union, Optional
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from navsim.agents.abstract_agent import AbstractAgent
from navsim.agents.transfuser.transfuser_callback import TransfuserCallback
from navsim.agents.vadv2.vadv2_features import (
Vadv2FeatureBuilder,
Vadv2TargetBuilder,
)
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.agents.vadv2.vadv2_loss import vadv2_loss_ori, vadv2_loss_center, vadv2_loss_center_woper
from navsim.agents.vadv2.vadv2_model import Vadv2Model
from navsim.common.dataclasses import SensorConfig
from navsim.planning.training.abstract_feature_target_builder import (
AbstractFeatureBuilder,
AbstractTargetBuilder,
)
DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT')
class Vadv2Agent(AbstractAgent):
def __init__(
self,
config: Vadv2Config,
lr: float,
checkpoint_path: str = None,
split=None,
vocab_size=4096,
closest=False,
ori=False
):
super().__init__()
self._config = config
self._lr = lr
self._checkpoint_path = checkpoint_path
self.vadv2_model = Vadv2Model(config)
self.vocab_pdm_score = pickle.load(open(f'{DEVKIT_ROOT}/vocab_score_local/{split}.pkl', 'rb'))
self.vocab_size = vocab_size
def name(self) -> str:
"""Inherited, see superclass."""
return self.__class__.__name__
def initialize(self) -> None:
"""Inherited, see superclass."""
if torch.cuda.is_available():
state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"]
else:
state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))[
"state_dict"]
self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})
def get_sensor_config(self) -> SensorConfig:
"""Inherited, see superclass."""
return SensorConfig.build_mm_sensors()
def get_target_builders(self) -> List[AbstractTargetBuilder]:
return [Vadv2TargetBuilder(config=self._config)]
def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
return [Vadv2FeatureBuilder(config=self._config)]
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
return self.vadv2_model(features)
def forward_train(self, features, interpolated_traj):
return self.vadv2_model(features, interpolated_traj)
def compute_loss(
self,
features: Dict[str, torch.Tensor],
targets: Dict[str, torch.Tensor],
predictions: Dict[str, torch.Tensor],
tokens=None
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
# get the pdm score by tokens
dummy_score = np.zeros(self._config.vocab_size, dtype=np.float32)
curr_vocab_pdm_score = [self.vocab_pdm_score.get(token, dummy_score)[None] for token in tokens]
curr_vocab_pdm_score = np.concatenate(curr_vocab_pdm_score, axis=0)
if self._config.type == 'ori':
return vadv2_loss_ori(targets, predictions, self._config, curr_vocab_pdm_score)
elif self._config.type == 'center':
return vadv2_loss_center(targets, predictions, self._config, curr_vocab_pdm_score)
elif self._config.type == 'center_woper':
return vadv2_loss_center_woper(targets, predictions, self._config, curr_vocab_pdm_score)
else:
raise NotImplementedError
def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
return torch.optim.Adam(self.vadv2_model.parameters(), lr=self._lr)
def get_training_callbacks(self) -> List[pl.Callback]:
return [TransfuserCallback(self._config),
ModelCheckpoint(
save_top_k=15,
monitor="val/loss_epoch",
mode="min",
dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/",
filename="{epoch:02d}-{step:04d}",
)
]