|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Tuple, Union
|
|
|
|
from torch import Tensor
|
|
import torch.nn as nn
|
|
|
|
|
|
def make_2tuple(x):
|
|
if isinstance(x, tuple):
|
|
assert len(x) == 2
|
|
return x
|
|
|
|
assert isinstance(x, int)
|
|
return (x, x)
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""
|
|
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
|
|
|
Args:
|
|
img_size: Image size.
|
|
patch_size: Patch token size.
|
|
in_chans: Number of input image channels.
|
|
embed_dim: Number of linear projection output channels.
|
|
norm_layer: Normalization layer.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
img_size: Union[int, Tuple[int, int]] = 224,
|
|
patch_size: Union[int, Tuple[int, int]] = 16,
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
norm_layer: Optional[Callable] = None,
|
|
flatten_embedding: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
image_HW = make_2tuple(img_size)
|
|
patch_HW = make_2tuple(patch_size)
|
|
patch_grid_size = (
|
|
image_HW[0] // patch_HW[0],
|
|
image_HW[1] // patch_HW[1],
|
|
)
|
|
|
|
self.img_size = image_HW
|
|
self.patch_size = patch_HW
|
|
self.patches_resolution = patch_grid_size
|
|
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
|
|
|
self.in_chans = in_chans
|
|
self.embed_dim = embed_dim
|
|
|
|
self.flatten_embedding = flatten_embedding
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
_, _, H, W = x.shape
|
|
patch_H, patch_W = self.patch_size
|
|
|
|
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
|
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
|
|
|
x = self.proj(x)
|
|
H, W = x.size(2), x.size(3)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.norm(x)
|
|
if not self.flatten_embedding:
|
|
x = x.reshape(-1, H, W, self.embed_dim)
|
|
return x
|
|
|
|
def flops(self) -> float:
|
|
Ho, Wo = self.patches_resolution
|
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
|
if self.norm is not None:
|
|
flops += Ho * Wo * self.embed_dim
|
|
return flops
|
|
|