hydra: | |
run: | |
dir: ${output_dir} | |
output_subdir: ${output_dir}/code/hydra # Store hydra's config breakdown here for debugging | |
searchpath: # Only <exp_dir> in these paths are discoverable | |
- det_map/config/defaults | |
- det_map/config | |
- det_map/config/splits | |
- det_map/config/agent | |
# - pkg://navsim.planning.script.config.training | |
defaults: | |
- default_common | |
- default_evaluation | |
- default_train_val_test_log_split | |
- agent: map_agent | |
- scene_filter: det_all_scenes | |
split: mini | |
dataloader: | |
params: | |
batch_size: 32 # number of samples per batch | |
num_workers: 4 # number of workers for data loading | |
pin_memory: true # pin memory for faster GPU transfer | |
prefetch_factor: 1 | |
trainer: | |
params: | |
max_epochs: 20 # maximum number of training epochs | |
check_val_every_n_epoch: 1 # run validation set every n training epochs | |
val_check_interval: 1.0 # [%] run validation set every X% of training set | |
limit_train_batches: 1.0 # how much of training dataset to check (float = fraction, int = num_batches) | |
limit_val_batches: 1.0 # how much of validation dataset to check (float = fraction, int = num_batches) | |
accelerator: gpu # distribution method | |
strategy: ddp | |
precision: 32 # floating point precision | |
num_nodes: 1 # Number of nodes used for training | |
num_sanity_val_steps: 0 # number of validation steps to run before training begins | |
fast_dev_run: false # runs 1 batch of train/val/test for sanity | |
accumulate_grad_batches: 1 # accumulates gradients every n batches | |
# track_grad_norm: -1 # logs the p-norm for inspection | |
gradient_clip_val: 0.0 # value to clip gradients | |
gradient_clip_algorithm: norm # [value, norm] method to clip gradients |