|
from typing import Any, Callable, List, Tuple
|
|
import matplotlib.pyplot as plt
|
|
from tqdm import tqdm
|
|
from PIL import Image
|
|
import io
|
|
|
|
from navsim.common.dataclasses import Scene
|
|
from navsim.visualization.config import BEV_PLOT_CONFIG, TRAJECTORY_CONFIG, CAMERAS_PLOT_CONFIG
|
|
from navsim.agents.abstract_agent import AbstractAgent
|
|
from navsim.visualization.bev import add_configured_bev_on_ax, add_trajectory_to_bev_ax
|
|
from navsim.visualization.camera import (
|
|
add_annotations_to_camera_ax,
|
|
add_lidar_to_camera_ax,
|
|
add_camera_ax,
|
|
)
|
|
|
|
|
|
def configure_bev_ax(ax: plt.Axes) -> plt.Axes:
|
|
"""
|
|
Configure the plt ax object for birds-eye-view plots
|
|
:param ax: matplotlib ax object
|
|
:return: configured ax object
|
|
"""
|
|
|
|
margin_x, margin_y = BEV_PLOT_CONFIG["figure_margin"]
|
|
ax.set_aspect("equal")
|
|
|
|
|
|
ax.set_xlim(-margin_y / 2, margin_y / 2)
|
|
ax.set_ylim(-margin_x / 2, margin_x / 2)
|
|
|
|
|
|
ax.invert_xaxis()
|
|
|
|
return ax
|
|
|
|
|
|
def configure_ax(ax: plt.Axes) -> plt.Axes:
|
|
"""
|
|
Configure the ax object for general plotting
|
|
:param ax: matplotlib ax object
|
|
:return: ax object without a,y ticks
|
|
"""
|
|
ax.set_xticks([])
|
|
ax.set_yticks([])
|
|
return ax
|
|
|
|
|
|
def configure_all_ax(ax: List[List[plt.Axes]]) -> List[List[plt.Axes]]:
|
|
"""
|
|
Iterates through 2D ax list/array to apply configurations
|
|
:param ax: 2D list/array of matplotlib ax object
|
|
:return: configure axes
|
|
"""
|
|
for i in range(len(ax)):
|
|
for j in range(len(ax[i])):
|
|
configure_ax(ax[i][j])
|
|
|
|
return ax
|
|
|
|
|
|
def plot_bev_frame(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, plt.Axes]:
|
|
"""
|
|
General plot for birds-eye-view visualization
|
|
:param scene: navsim scene dataclass
|
|
:param frame_idx: index of selected frame
|
|
:return: figure and ax object of matplotlib
|
|
"""
|
|
fig, ax = plt.subplots(1, 1, figsize=BEV_PLOT_CONFIG["figure_size"])
|
|
add_configured_bev_on_ax(ax, scene.map_api, scene.frames[frame_idx])
|
|
configure_bev_ax(ax)
|
|
configure_ax(ax)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def plot_bev_with_agent(scene: Scene, agent: AbstractAgent) -> Tuple[plt.Figure, plt.Axes]:
|
|
"""
|
|
Plots agent and human trajectory in birds-eye-view visualization
|
|
:param scene: navsim scene dataclass
|
|
:param agent: navsim agent
|
|
:return: figure and ax object of matplotlib
|
|
"""
|
|
|
|
human_trajectory = scene.get_future_trajectory()
|
|
agent_trajectory = agent.compute_trajectory(scene.get_agent_input())
|
|
|
|
frame_idx = scene.scene_metadata.num_history_frames - 1
|
|
fig, ax = plt.subplots(1, 1, figsize=BEV_PLOT_CONFIG["figure_size"])
|
|
add_configured_bev_on_ax(ax, scene.map_api, scene.frames[frame_idx])
|
|
add_trajectory_to_bev_ax(ax, human_trajectory, TRAJECTORY_CONFIG["human"])
|
|
add_trajectory_to_bev_ax(ax, agent_trajectory, TRAJECTORY_CONFIG["agent"])
|
|
configure_bev_ax(ax)
|
|
configure_ax(ax)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def plot_cameras_frame(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
|
|
"""
|
|
Plots 8x cameras and birds-eye-view visualization in 3x3 grid
|
|
:param scene: navsim scene dataclass
|
|
:param frame_idx: index of selected frame
|
|
:return: figure and ax object of matplotlib
|
|
"""
|
|
|
|
frame = scene.frames[frame_idx]
|
|
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
|
|
|
|
add_camera_ax(ax[0, 0], frame.cameras.cam_l0)
|
|
add_camera_ax(ax[0, 1], frame.cameras.cam_f0)
|
|
add_camera_ax(ax[0, 2], frame.cameras.cam_r0)
|
|
|
|
add_camera_ax(ax[1, 0], frame.cameras.cam_l1)
|
|
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
|
|
add_camera_ax(ax[1, 2], frame.cameras.cam_r1)
|
|
|
|
add_camera_ax(ax[2, 0], frame.cameras.cam_l2)
|
|
add_camera_ax(ax[2, 1], frame.cameras.cam_b0)
|
|
add_camera_ax(ax[2, 2], frame.cameras.cam_r2)
|
|
|
|
configure_all_ax(ax)
|
|
configure_bev_ax(ax[1, 1])
|
|
fig.tight_layout()
|
|
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def plot_cameras_frame_with_lidar(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
|
|
"""
|
|
Plots 8x cameras (including the lidar pc) and birds-eye-view visualization in 3x3 grid
|
|
:param scene: navsim scene dataclass
|
|
:param frame_idx: index of selected frame
|
|
:return: figure and ax object of matplotlib
|
|
"""
|
|
|
|
frame = scene.frames[frame_idx]
|
|
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
|
|
|
|
add_lidar_to_camera_ax(ax[0, 0], frame.cameras.cam_l0, frame.lidar)
|
|
add_lidar_to_camera_ax(ax[0, 1], frame.cameras.cam_f0, frame.lidar)
|
|
add_lidar_to_camera_ax(ax[0, 2], frame.cameras.cam_r0, frame.lidar)
|
|
|
|
add_lidar_to_camera_ax(ax[1, 0], frame.cameras.cam_l1, frame.lidar)
|
|
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
|
|
add_lidar_to_camera_ax(ax[1, 2], frame.cameras.cam_r1, frame.lidar)
|
|
|
|
add_lidar_to_camera_ax(ax[2, 0], frame.cameras.cam_l2, frame.lidar)
|
|
add_lidar_to_camera_ax(ax[2, 1], frame.cameras.cam_b0, frame.lidar)
|
|
add_lidar_to_camera_ax(ax[2, 2], frame.cameras.cam_r2, frame.lidar)
|
|
|
|
configure_all_ax(ax)
|
|
configure_bev_ax(ax[1, 1])
|
|
fig.tight_layout()
|
|
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def plot_cameras_frame_with_annotations(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
|
|
"""
|
|
Plots 8x cameras (including the bounding boxes) and birds-eye-view visualization in 3x3 grid
|
|
:param scene: navsim scene dataclass
|
|
:param frame_idx: index of selected frame
|
|
:return: figure and ax object of matplotlib
|
|
"""
|
|
|
|
frame = scene.frames[frame_idx]
|
|
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
|
|
|
|
add_annotations_to_camera_ax(ax[0, 0], frame.cameras.cam_l0, frame.annotations)
|
|
add_annotations_to_camera_ax(ax[0, 1], frame.cameras.cam_f0, frame.annotations)
|
|
add_annotations_to_camera_ax(ax[0, 2], frame.cameras.cam_r0, frame.annotations)
|
|
|
|
add_annotations_to_camera_ax(ax[1, 0], frame.cameras.cam_l1, frame.annotations)
|
|
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
|
|
add_annotations_to_camera_ax(ax[1, 2], frame.cameras.cam_r1, frame.annotations)
|
|
|
|
add_annotations_to_camera_ax(ax[2, 0], frame.cameras.cam_l2, frame.annotations)
|
|
add_annotations_to_camera_ax(ax[2, 1], frame.cameras.cam_b0, frame.annotations)
|
|
add_annotations_to_camera_ax(ax[2, 2], frame.cameras.cam_r2, frame.annotations)
|
|
|
|
configure_all_ax(ax)
|
|
configure_bev_ax(ax[1, 1])
|
|
fig.tight_layout()
|
|
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
|
|
|
|
return fig, ax
|
|
|
|
|
|
def frame_plot_to_pil(
|
|
callable_frame_plot: Callable[[Scene, int], Tuple[plt.Figure, Any]],
|
|
scene: Scene,
|
|
frame_indices: List[int],
|
|
) -> List[Image.Image]:
|
|
"""
|
|
Plots a frame according to plotting function and return a list of PIL images
|
|
:param callable_frame_plot: callable to plot a single frame
|
|
:param scene: navsim scene dataclass
|
|
:param frame_indices: list of indices to save
|
|
:return: list of PIL images
|
|
"""
|
|
|
|
images: List[Image.Image] = []
|
|
|
|
for frame_idx in tqdm(frame_indices, desc="Rendering frames"):
|
|
fig, ax = callable_frame_plot(scene, frame_idx)
|
|
|
|
|
|
buf = io.BytesIO()
|
|
fig.savefig(buf, format="png")
|
|
buf.seek(0)
|
|
images.append(Image.open(buf).copy())
|
|
|
|
|
|
buf.close()
|
|
plt.close(fig)
|
|
|
|
return images
|
|
|
|
|
|
def frame_plot_to_gif(
|
|
file_name: str,
|
|
callable_frame_plot: Callable[[Scene, int], Tuple[plt.Figure, Any]],
|
|
scene: Scene,
|
|
frame_indices: List[int],
|
|
duration: float = 500,
|
|
) -> None:
|
|
"""
|
|
Saves a frame-wise plotting function as GIF (hard G)
|
|
:param callable_frame_plot: callable to plot a single frame
|
|
:param scene: navsim scene dataclass
|
|
:param frame_indices: list of indices
|
|
:param file_name: file path for saving to save
|
|
:param duration: frame interval in ms, defaults to 500
|
|
"""
|
|
images = frame_plot_to_pil(callable_frame_plot, scene, frame_indices)
|
|
images[0].save(file_name, save_all=True, append_images=images[1:], duration=duration, loop=0)
|
|
|