lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
8.56 kB
from typing import Any, Callable, List, Tuple
import matplotlib.pyplot as plt
from tqdm import tqdm
from PIL import Image
import io
from navsim.common.dataclasses import Scene
from navsim.visualization.config import BEV_PLOT_CONFIG, TRAJECTORY_CONFIG, CAMERAS_PLOT_CONFIG
from navsim.agents.abstract_agent import AbstractAgent
from navsim.visualization.bev import add_configured_bev_on_ax, add_trajectory_to_bev_ax
from navsim.visualization.camera import (
add_annotations_to_camera_ax,
add_lidar_to_camera_ax,
add_camera_ax,
)
def configure_bev_ax(ax: plt.Axes) -> plt.Axes:
"""
Configure the plt ax object for birds-eye-view plots
:param ax: matplotlib ax object
:return: configured ax object
"""
margin_x, margin_y = BEV_PLOT_CONFIG["figure_margin"]
ax.set_aspect("equal")
# NOTE: x forward, y sideways
ax.set_xlim(-margin_y / 2, margin_y / 2)
ax.set_ylim(-margin_x / 2, margin_x / 2)
# NOTE: left is y positive, right is y negative
ax.invert_xaxis()
return ax
def configure_ax(ax: plt.Axes) -> plt.Axes:
"""
Configure the ax object for general plotting
:param ax: matplotlib ax object
:return: ax object without a,y ticks
"""
ax.set_xticks([])
ax.set_yticks([])
return ax
def configure_all_ax(ax: List[List[plt.Axes]]) -> List[List[plt.Axes]]:
"""
Iterates through 2D ax list/array to apply configurations
:param ax: 2D list/array of matplotlib ax object
:return: configure axes
"""
for i in range(len(ax)):
for j in range(len(ax[i])):
configure_ax(ax[i][j])
return ax
def plot_bev_frame(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, plt.Axes]:
"""
General plot for birds-eye-view visualization
:param scene: navsim scene dataclass
:param frame_idx: index of selected frame
:return: figure and ax object of matplotlib
"""
fig, ax = plt.subplots(1, 1, figsize=BEV_PLOT_CONFIG["figure_size"])
add_configured_bev_on_ax(ax, scene.map_api, scene.frames[frame_idx])
configure_bev_ax(ax)
configure_ax(ax)
return fig, ax
def plot_bev_with_agent(scene: Scene, agent: AbstractAgent) -> Tuple[plt.Figure, plt.Axes]:
"""
Plots agent and human trajectory in birds-eye-view visualization
:param scene: navsim scene dataclass
:param agent: navsim agent
:return: figure and ax object of matplotlib
"""
human_trajectory = scene.get_future_trajectory()
agent_trajectory = agent.compute_trajectory(scene.get_agent_input())
frame_idx = scene.scene_metadata.num_history_frames - 1
fig, ax = plt.subplots(1, 1, figsize=BEV_PLOT_CONFIG["figure_size"])
add_configured_bev_on_ax(ax, scene.map_api, scene.frames[frame_idx])
add_trajectory_to_bev_ax(ax, human_trajectory, TRAJECTORY_CONFIG["human"])
add_trajectory_to_bev_ax(ax, agent_trajectory, TRAJECTORY_CONFIG["agent"])
configure_bev_ax(ax)
configure_ax(ax)
return fig, ax
def plot_cameras_frame(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
"""
Plots 8x cameras and birds-eye-view visualization in 3x3 grid
:param scene: navsim scene dataclass
:param frame_idx: index of selected frame
:return: figure and ax object of matplotlib
"""
frame = scene.frames[frame_idx]
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
add_camera_ax(ax[0, 0], frame.cameras.cam_l0)
add_camera_ax(ax[0, 1], frame.cameras.cam_f0)
add_camera_ax(ax[0, 2], frame.cameras.cam_r0)
add_camera_ax(ax[1, 0], frame.cameras.cam_l1)
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
add_camera_ax(ax[1, 2], frame.cameras.cam_r1)
add_camera_ax(ax[2, 0], frame.cameras.cam_l2)
add_camera_ax(ax[2, 1], frame.cameras.cam_b0)
add_camera_ax(ax[2, 2], frame.cameras.cam_r2)
configure_all_ax(ax)
configure_bev_ax(ax[1, 1])
fig.tight_layout()
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
return fig, ax
def plot_cameras_frame_with_lidar(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
"""
Plots 8x cameras (including the lidar pc) and birds-eye-view visualization in 3x3 grid
:param scene: navsim scene dataclass
:param frame_idx: index of selected frame
:return: figure and ax object of matplotlib
"""
frame = scene.frames[frame_idx]
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
add_lidar_to_camera_ax(ax[0, 0], frame.cameras.cam_l0, frame.lidar)
add_lidar_to_camera_ax(ax[0, 1], frame.cameras.cam_f0, frame.lidar)
add_lidar_to_camera_ax(ax[0, 2], frame.cameras.cam_r0, frame.lidar)
add_lidar_to_camera_ax(ax[1, 0], frame.cameras.cam_l1, frame.lidar)
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
add_lidar_to_camera_ax(ax[1, 2], frame.cameras.cam_r1, frame.lidar)
add_lidar_to_camera_ax(ax[2, 0], frame.cameras.cam_l2, frame.lidar)
add_lidar_to_camera_ax(ax[2, 1], frame.cameras.cam_b0, frame.lidar)
add_lidar_to_camera_ax(ax[2, 2], frame.cameras.cam_r2, frame.lidar)
configure_all_ax(ax)
configure_bev_ax(ax[1, 1])
fig.tight_layout()
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
return fig, ax
def plot_cameras_frame_with_annotations(scene: Scene, frame_idx: int) -> Tuple[plt.Figure, Any]:
"""
Plots 8x cameras (including the bounding boxes) and birds-eye-view visualization in 3x3 grid
:param scene: navsim scene dataclass
:param frame_idx: index of selected frame
:return: figure and ax object of matplotlib
"""
frame = scene.frames[frame_idx]
fig, ax = plt.subplots(3, 3, figsize=CAMERAS_PLOT_CONFIG["figure_size"])
add_annotations_to_camera_ax(ax[0, 0], frame.cameras.cam_l0, frame.annotations)
add_annotations_to_camera_ax(ax[0, 1], frame.cameras.cam_f0, frame.annotations)
add_annotations_to_camera_ax(ax[0, 2], frame.cameras.cam_r0, frame.annotations)
add_annotations_to_camera_ax(ax[1, 0], frame.cameras.cam_l1, frame.annotations)
add_configured_bev_on_ax(ax[1, 1], scene.map_api, frame)
add_annotations_to_camera_ax(ax[1, 2], frame.cameras.cam_r1, frame.annotations)
add_annotations_to_camera_ax(ax[2, 0], frame.cameras.cam_l2, frame.annotations)
add_annotations_to_camera_ax(ax[2, 1], frame.cameras.cam_b0, frame.annotations)
add_annotations_to_camera_ax(ax[2, 2], frame.cameras.cam_r2, frame.annotations)
configure_all_ax(ax)
configure_bev_ax(ax[1, 1])
fig.tight_layout()
fig.subplots_adjust(wspace=0.01, hspace=0.01, left=0.01, right=0.99, top=0.99, bottom=0.01)
return fig, ax
def frame_plot_to_pil(
callable_frame_plot: Callable[[Scene, int], Tuple[plt.Figure, Any]],
scene: Scene,
frame_indices: List[int],
) -> List[Image.Image]:
"""
Plots a frame according to plotting function and return a list of PIL images
:param callable_frame_plot: callable to plot a single frame
:param scene: navsim scene dataclass
:param frame_indices: list of indices to save
:return: list of PIL images
"""
images: List[Image.Image] = []
for frame_idx in tqdm(frame_indices, desc="Rendering frames"):
fig, ax = callable_frame_plot(scene, frame_idx)
# Creating PIL image from fig
buf = io.BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
images.append(Image.open(buf).copy())
# close buffer and figure
buf.close()
plt.close(fig)
return images
def frame_plot_to_gif(
file_name: str,
callable_frame_plot: Callable[[Scene, int], Tuple[plt.Figure, Any]],
scene: Scene,
frame_indices: List[int],
duration: float = 500,
) -> None:
"""
Saves a frame-wise plotting function as GIF (hard G)
:param callable_frame_plot: callable to plot a single frame
:param scene: navsim scene dataclass
:param frame_indices: list of indices
:param file_name: file path for saving to save
:param duration: frame interval in ms, defaults to 500
"""
images = frame_plot_to_pil(callable_frame_plot, scene, frame_indices)
images[0].save(file_name, save_all=True, append_images=images[1:], duration=duration, loop=0)