lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
2.21 kB
import io
import logging
import os
import pickle
import uuid
from pathlib import Path
import hydra
import matplotlib.pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw
from hydra.utils import instantiate
from matplotlib.collections import LineCollection
from nuplan.planning.utils.multithreading.worker_utils import worker_map
from omegaconf import DictConfig
from tqdm import tqdm
from navsim.common.dataclasses import AgentInput, Scene
from navsim.common.dataclasses import SensorConfig
from navsim.common.dataloader import SceneLoader, MetricCacheLoader
from navsim.planning.script.builders.worker_pool_builder import build_worker
from navsim.visualization.private import view_points
# your path to these files
vocab = np.load(f'{os.getenv("NAVSIM_DEVKIT_ROOT")}/traj_final/test_8192_kmeans.npy')
subscores = pickle.load(open(f'{os.getenv("OPENSCENE_DATA_ROOT")}/subscores/sinepe.pkl', 'rb'))
logger = logging.getLogger(__name__)
CONFIG_PATH = "../planning/script/config/pdm_scoring"
CONFIG_NAME = "run_pdm_score_ddp"
@hydra.main(config_path=CONFIG_PATH, config_name=CONFIG_NAME)
def main(cfg: DictConfig) -> None:
data_path = Path(cfg.navsim_log_path)
sensor_blobs_path = Path(cfg.sensor_blobs_path)
scene_filter = instantiate(cfg.scene_filter)
scene_loader = SceneLoader(
data_path=data_path,
scene_filter=scene_filter,
sensor_blobs_path=sensor_blobs_path,
sensor_config=SensorConfig.build_no_sensors()
)
l2_dists = []
for token in tqdm(scene_loader.tokens):
gt_traj = Scene.from_scene_dict_list(
scene_loader.scene_frames_dicts[token],
scene_loader._sensor_blobs_path,
scene_loader._scene_filter.num_history_frames,
10,
scene_loader._sensor_config
).get_future_trajectory(int(4 / 0.5))
model_traj = subscores[token]['trajectory']
sampled_timepoints = [5 * k - 1 for k in range(1, 9)]
l2_dist = ((gt_traj.poses - model_traj.poses[sampled_timepoints]) ** 2).sum()
l2_dists.append(l2_dist)
print(sum(l2_dists) / len(l2_dists))
if __name__ == "__main__":
with torch.no_grad():
main()