|
import warnings
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from mmcv.cnn import xavier_init, constant_init
|
|
from mmcv.cnn.bricks.registry import (ATTENTION)
|
|
from mmcv.cnn.bricks.transformer import build_attention
|
|
from mmcv.runner import force_fp32
|
|
from mmcv.runner.base_module import BaseModule
|
|
|
|
from .ops.geometric_kernel_attn import GeometricKernelAttentionFunc
|
|
|
|
|
|
@ATTENTION.register_module()
|
|
class GeometrySptialCrossAttention(BaseModule):
|
|
"""An attention module used in BEVFormer.
|
|
Args:
|
|
embed_dims (int): The embedding dimension of Attention.
|
|
Default: 256.
|
|
num_cams (int): The number of cameras
|
|
dropout (float): A Dropout layer on `inp_residual`.
|
|
Default: 0..
|
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
|
|
Default: None.
|
|
deformable_attention: (dict): The config for the deformable attention used in SCA.
|
|
"""
|
|
|
|
def __init__(self,
|
|
embed_dims=256,
|
|
num_cams=6,
|
|
pc_range=None,
|
|
dropout=0.1,
|
|
init_cfg=None,
|
|
batch_first=False,
|
|
attention=dict(
|
|
type='MSDeformableAttention3D',
|
|
embed_dims=256,
|
|
num_levels=4),
|
|
**kwargs
|
|
):
|
|
super(GeometrySptialCrossAttention, self).__init__(init_cfg)
|
|
|
|
self.init_cfg = init_cfg
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.pc_range = pc_range
|
|
self.fp16_enabled = False
|
|
self.attention = build_attention(attention)
|
|
self.embed_dims = embed_dims
|
|
self.num_cams = num_cams
|
|
self.output_proj = nn.Linear(embed_dims, embed_dims)
|
|
self.batch_first = batch_first
|
|
self.init_weight()
|
|
|
|
def init_weight(self):
|
|
"""Default initialization for Parameters of Module."""
|
|
xavier_init(self.output_proj, distribution='uniform', bias=0.)
|
|
|
|
@force_fp32(apply_to=('query', 'key', 'value', 'query_pos', 'reference_points_cam'))
|
|
def forward(self,
|
|
query,
|
|
key,
|
|
value,
|
|
residual=None,
|
|
query_pos=None,
|
|
key_padding_mask=None,
|
|
reference_points=None,
|
|
spatial_shapes=None,
|
|
reference_points_cam=None,
|
|
bev_mask=None,
|
|
level_start_index=None,
|
|
flag='encoder',
|
|
**kwargs):
|
|
"""Forward Function of Detr3DCrossAtten.
|
|
Args:
|
|
query (Tensor): Query of Transformer with shape
|
|
(num_query, bs, embed_dims).
|
|
key (Tensor): The key tensor with shape
|
|
`(num_key, bs, embed_dims)`.
|
|
value (Tensor): The value tensor with shape
|
|
`(num_key, bs, embed_dims)`. (B, N, C, H, W)
|
|
residual (Tensor): The tensor used for addition, with the
|
|
same shape as `x`. Default None. If None, `x` will be used.
|
|
query_pos (Tensor): The positional encoding for `query`.
|
|
Default: None.
|
|
key_pos (Tensor): The positional encoding for `key`. Default
|
|
None.
|
|
reference_points (Tensor): The normalized reference
|
|
points with shape (bs, num_query, 4),
|
|
all elements is range in [0, 1], top-left (0,0),
|
|
bottom-right (1, 1), including padding area.
|
|
or (N, Length_{query}, num_levels, 4), add
|
|
additional two dimensions is (w, h) to
|
|
form reference boxes.
|
|
key_padding_mask (Tensor): ByteTensor for `query`, with
|
|
shape [bs, num_key].
|
|
spatial_shapes (Tensor): Spatial shape of features in
|
|
different level. With shape (num_levels, 2),
|
|
last dimension represent (h, w).
|
|
level_start_index (Tensor): The start index of each level.
|
|
A tensor has shape (num_levels) and can be represented
|
|
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
|
|
Returns:
|
|
Tensor: forwarded results with shape [num_query, bs, embed_dims].
|
|
"""
|
|
|
|
if key is None:
|
|
key = query
|
|
if value is None:
|
|
value = key
|
|
|
|
if residual is None:
|
|
inp_residual = query
|
|
slots = torch.zeros_like(query)
|
|
if query_pos is not None:
|
|
query = query + query_pos
|
|
|
|
bs, num_query, _ = query.size()
|
|
|
|
D = reference_points_cam.size(3)
|
|
indexes = []
|
|
for i, mask_per_img in enumerate(bev_mask):
|
|
index_query_per_img = mask_per_img[0].sum(-1).nonzero().squeeze(-1)
|
|
indexes.append(index_query_per_img)
|
|
max_len = max([len(each) for each in indexes])
|
|
|
|
|
|
queries_rebatch = query.new_zeros(
|
|
[bs, self.num_cams, max_len, self.embed_dims])
|
|
reference_points_rebatch = reference_points_cam.new_zeros(
|
|
[bs, self.num_cams, max_len, D, 2])
|
|
|
|
for j in range(bs):
|
|
for i, reference_points_per_img in enumerate(reference_points_cam):
|
|
index_query_per_img = indexes[i]
|
|
queries_rebatch[j, i, :len(
|
|
index_query_per_img)] = query[j, index_query_per_img]
|
|
reference_points_rebatch[j, i, :len(
|
|
index_query_per_img)] = reference_points_per_img[j, index_query_per_img]
|
|
|
|
num_cams, l, bs, embed_dims = key.shape
|
|
|
|
key = key.permute(2, 0, 1, 3).reshape(
|
|
bs * self.num_cams, l, self.embed_dims)
|
|
value = value.permute(2, 0, 1, 3).reshape(
|
|
bs * self.num_cams, l, self.embed_dims)
|
|
|
|
queries = self.attention(query=queries_rebatch.view(bs * self.num_cams, max_len, self.embed_dims), key=key,
|
|
value=value,
|
|
reference_points=reference_points_rebatch.view(bs * self.num_cams, max_len, D, 2),
|
|
spatial_shapes=spatial_shapes,
|
|
level_start_index=level_start_index).view(bs, self.num_cams, max_len, self.embed_dims)
|
|
for j in range(bs):
|
|
for i, index_query_per_img in enumerate(indexes):
|
|
slots[j, index_query_per_img] += queries[j,
|
|
i, :len(index_query_per_img)]
|
|
|
|
count = bev_mask.sum(-1) > 0
|
|
count = count.permute(1, 2, 0).sum(-1)
|
|
count = torch.clamp(count, min=1.0)
|
|
slots = slots / count[..., None]
|
|
slots = self.output_proj(slots)
|
|
|
|
return self.dropout(slots) + inp_residual
|
|
|
|
|
|
@ATTENTION.register_module()
|
|
class GeometryKernelAttention(BaseModule):
|
|
"""An attention module used in BEVFormer based on Deformable-Detr.
|
|
`Deformable DETR: Deformable Transformers for End-to-End Object Detection.
|
|
<https://arxiv.org/pdf/2010.04159.pdf>`_.
|
|
Args:
|
|
embed_dims (int): The embedding dimension of Attention.
|
|
Default: 256.
|
|
num_heads (int): Parallel attention heads. Default: 64.
|
|
num_levels (int): The number of feature map used in
|
|
Attention. Default: 4.
|
|
num_points (int): The number of sampling points for
|
|
each query in each head. Default: 4.
|
|
im2col_step (int): The step used in image_to_column.
|
|
Default: 64.
|
|
dropout (float): A Dropout layer on `inp_identity`.
|
|
Default: 0.1.
|
|
batch_first (bool): Key, Query and Value are shape of
|
|
(batch, n, embed_dim)
|
|
or (n, batch, embed_dim). Default to False.
|
|
norm_cfg (dict): Config dict for normalization layer.
|
|
Default: None.
|
|
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization.
|
|
Default: None.
|
|
"""
|
|
|
|
def __init__(self,
|
|
embed_dims=256,
|
|
num_heads=8,
|
|
num_levels=4,
|
|
num_points=4,
|
|
kernel_size=(3, 3),
|
|
dilation=1,
|
|
im2col_step=64,
|
|
dropout=0.1,
|
|
batch_first=True,
|
|
norm_cfg=None,
|
|
init_cfg=None):
|
|
super().__init__(init_cfg)
|
|
if embed_dims % num_heads != 0:
|
|
raise ValueError(f'embed_dims must be divisible by num_heads, '
|
|
f'but got {embed_dims} and {num_heads}')
|
|
dim_per_head = embed_dims // num_heads
|
|
self.norm_cfg = norm_cfg
|
|
self.batch_first = batch_first
|
|
self.output_proj = None
|
|
self.fp16_enabled = False
|
|
|
|
|
|
|
|
def _is_power_of_2(n):
|
|
if (not isinstance(n, int)) or (n < 0):
|
|
raise ValueError(
|
|
'invalid input for _is_power_of_2: {} (type: {})'.format(
|
|
n, type(n)))
|
|
return (n & (n - 1) == 0) and n != 0
|
|
|
|
if not _is_power_of_2(dim_per_head):
|
|
warnings.warn(
|
|
"You'd better set embed_dims in "
|
|
'MultiScaleDeformAttention to make '
|
|
'the dimension of each attention head a power of 2 '
|
|
'which is more efficient in our CUDA implementation.')
|
|
|
|
self.im2col_step = im2col_step
|
|
self.embed_dims = embed_dims
|
|
|
|
self.num_levels = num_levels
|
|
|
|
self.num_heads = num_heads
|
|
self.kernel_size = kernel_size
|
|
self.num_points = kernel_size[0] * kernel_size[1]
|
|
|
|
|
|
|
|
self.attention_weights = nn.Linear(
|
|
embed_dims, num_levels * self.num_points * self.num_heads)
|
|
self.value_proj = nn.Linear(embed_dims, embed_dims)
|
|
|
|
grid_h, grid_w = kernel_size
|
|
y = (torch.arange(grid_h) - grid_h // 2) * dilation
|
|
x = (torch.arange(grid_w) - grid_w // 2) * dilation
|
|
offsets = torch.stack(
|
|
torch.meshgrid(x, y)).permute(1, 2, 0).reshape(grid_h * grid_w, 2)
|
|
self.register_buffer("grid_offsets", offsets, persistent=False)
|
|
self.init_weights()
|
|
|
|
def init_weights(self):
|
|
"""Default initialization for Parameters of Module."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
constant_init(self.attention_weights, val=0., bias=0.)
|
|
xavier_init(self.value_proj, distribution='uniform', bias=0.)
|
|
xavier_init(self.output_proj, distribution='uniform', bias=0.)
|
|
self._is_init = True
|
|
|
|
def forward_kernel_multihead_attention(self, value, spatial_shapes, sampling_locations, attention_weights):
|
|
|
|
"""CPU version of multi-scale deformable attention.
|
|
|
|
Args:
|
|
value (Tensor): The value has shape
|
|
(bs, num_keys, dim)
|
|
spatial_shapes (Tensor): Spatial shape of
|
|
each feature map, has shape (num_levels, 2),
|
|
last dimension 2 represent (h, w)
|
|
sampling_locations (Tensor): The location of sampling points,
|
|
has shape
|
|
(bs ,num_queries, num_levels, num_points, 2),
|
|
the last dimension 2 represent (x, y).
|
|
attention_weights (Tensor): The weight of sampling points used
|
|
when calculate the attention, has shape
|
|
(bs ,num_queries, num_levels, num_points),
|
|
|
|
Returns:
|
|
Tensor: has shape (bs, num_queries, embed_dims)
|
|
"""
|
|
|
|
|
|
bs, num_keys, num_heads, dim = value.shape
|
|
|
|
|
|
|
|
value = value.transpose(1, 2).contiguous().view(
|
|
bs * num_heads * num_keys, dim)
|
|
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
with torch.no_grad():
|
|
sampling_index = sampling_locations.new_zeros(
|
|
(bs, num_queries, num_heads, num_levels, num_points)).to(value.device)
|
|
start_index = 0
|
|
for level, (H_, W_) in enumerate(spatial_shapes):
|
|
|
|
sampling_locations[:, :, :, level,
|
|
:, 0].clamp_(min=0, max=W_ - 1)
|
|
sampling_locations[:, :, :, level,
|
|
:, 1].clamp_(min=0, max=H_ - 1)
|
|
sampling_index[:, :, :, level] = start_index + sampling_locations[:, :, :, level, :, 0] \
|
|
+ sampling_locations[:, :, :, level, :, 1] * W_
|
|
start_index += H_ * W_
|
|
|
|
|
|
sampling_index = sampling_index.transpose(
|
|
1, 2).reshape(bs, num_heads, -1)
|
|
sampling_index = sampling_index + \
|
|
(torch.arange(num_heads).to(sampling_index)
|
|
* num_keys).view(1, num_heads, 1)
|
|
|
|
sampling_index = sampling_index.reshape(
|
|
bs, -1) + (torch.arange(bs).to(sampling_index) * num_keys * num_heads).view(bs, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sampling_value = value[sampling_index].view(
|
|
bs, num_heads, num_queries, num_levels * num_points, dim)
|
|
|
|
attention_weights = attention_weights.transpose(1, 2).contiguous().view(
|
|
bs, num_heads, num_queries, num_levels * num_points, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = (sampling_value *
|
|
attention_weights).sum(-2).transpose(1, 2).contiguous()
|
|
|
|
|
|
|
|
|
|
|
|
return output.view(bs, num_queries, -1)
|
|
|
|
def forward(self,
|
|
query,
|
|
key=None,
|
|
value=None,
|
|
identity=None,
|
|
query_pos=None,
|
|
key_padding_mask=None,
|
|
reference_points=None,
|
|
spatial_shapes=None,
|
|
level_start_index=None,
|
|
**kwargs):
|
|
"""Forward Function of MultiScaleDeformAttention.
|
|
Args:
|
|
query (Tensor): Query of Transformer with shape
|
|
( bs, num_query, embed_dims).
|
|
key (Tensor): The key tensor with shape
|
|
`(bs, num_key, embed_dims)`.
|
|
value (Tensor): The value tensor with shape
|
|
`(bs, num_key, embed_dims)`.
|
|
identity (Tensor): The tensor used for addition, with the
|
|
same shape as `query`. Default None. If None,
|
|
`query` will be used.
|
|
query_pos (Tensor): The positional encoding for `query`.
|
|
Default: None.
|
|
key_pos (Tensor): The positional encoding for `key`. Default
|
|
None.
|
|
reference_points (Tensor): The normalized reference
|
|
points with shape (bs, num_query, num_levels, 2),
|
|
all elements is range in [0, 1], top-left (0,0),
|
|
bottom-right (1, 1), including padding area.
|
|
or (N, Length_{query}, num_levels, 4), add
|
|
additional two dimensions is (w, h) to
|
|
form reference boxes.
|
|
key_padding_mask (Tensor): ByteTensor for `query`, with
|
|
shape [bs, num_key].
|
|
spatial_shapes (Tensor): Spatial shape of features in
|
|
different levels. With shape (num_levels, 2),
|
|
last dimension represents (h, w).
|
|
level_start_index (Tensor): The start index of each level.
|
|
A tensor has shape ``(num_levels, )`` and can be represented
|
|
as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...].
|
|
Returns:
|
|
Tensor: forwarded results with shape [num_query, bs, embed_dims].
|
|
"""
|
|
|
|
if value is None:
|
|
value = query
|
|
if identity is None:
|
|
identity = query
|
|
if query_pos is not None:
|
|
query = query + query_pos
|
|
|
|
if not self.batch_first:
|
|
|
|
query = query.permute(1, 0, 2)
|
|
value = value.permute(1, 0, 2)
|
|
|
|
bs, num_query, _ = query.shape
|
|
bs, num_value, _ = value.shape
|
|
assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
|
|
|
|
value = self.value_proj(value)
|
|
if key_padding_mask is not None:
|
|
value = value.masked_fill(key_padding_mask[..., None], 0.0)
|
|
value = value.view(bs, num_value, self.num_heads, -1)
|
|
|
|
|
|
|
|
|
|
|
|
attention_weights = self.attention_weights(query).view(
|
|
bs, num_query, self.num_heads, self.num_levels * self.num_points)
|
|
|
|
attention_weights = attention_weights.softmax(-1)
|
|
|
|
attention_weights = attention_weights.view(bs, num_query,
|
|
self.num_heads,
|
|
self.num_levels,
|
|
self.num_points)
|
|
|
|
if reference_points.shape[-1] == 2:
|
|
"""
|
|
For each BEV query, it owns `num_Z_anchors` in 3D space that having different heights.
|
|
After proejcting, each BEV query has `num_Z_anchors` reference points in each 2D image.
|
|
For each referent point, we sample `num_points` sampling points.
|
|
For `num_Z_anchors` reference points, it has overall `num_points * num_Z_anchors` sampling points.
|
|
"""
|
|
with torch.no_grad():
|
|
offset_normalizer = torch.stack(
|
|
[spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
|
|
bs, num_query, num_Z_anchors, xy = reference_points.shape
|
|
|
|
|
|
offsets = self.grid_offsets[None, None, None, None]
|
|
|
|
reference_points = reference_points[:,
|
|
:, :, None, :] * offset_normalizer
|
|
|
|
|
|
|
|
sampling_locations = (
|
|
reference_points[:, :, :, :, None, :] + offsets).round().long()
|
|
|
|
|
|
|
|
|
|
bs, num_query, num_heads, num_levels, num_all_points, xy = sampling_locations.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif reference_points.shape[-1] == 4:
|
|
assert False
|
|
else:
|
|
raise ValueError(
|
|
f'Last dim of reference_points must be'
|
|
f' 2 or 4, but get {reference_points.shape[-1]} instead.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = GeometricKernelAttentionFunc.apply(
|
|
value, spatial_shapes, level_start_index, sampling_locations.contiguous(), attention_weights,
|
|
self.im2col_step
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not self.batch_first:
|
|
output = output.permute(1, 0, 2)
|
|
|
|
|
|
|
|
return output
|
|
|