|
import torch
|
|
import torch.nn as nn
|
|
from det_map.det.dal.mmdet3d.models.builder import LOSSES
|
|
import torch.nn.functional as F
|
|
from mmdet.models.losses import FocalLoss, weight_reduce_loss
|
|
|
|
def py_sigmoid_focal_loss(pred,
|
|
target,
|
|
weight=None,
|
|
gamma=2.0,
|
|
alpha=0.25,
|
|
reduction='mean',
|
|
avg_factor=None):
|
|
"""PyTorch version of `Focal Loss <https://arxiv.org/abs/1708.02002>`_.
|
|
|
|
Args:
|
|
pred (torch.Tensor): The prediction with shape (N, C), C is the
|
|
number of classes
|
|
target (torch.Tensor): The learning label of the prediction.
|
|
weight (torch.Tensor, optional): Sample-wise loss weight.
|
|
gamma (float, optional): The gamma for calculating the modulating
|
|
factor. Defaults to 2.0.
|
|
alpha (float, optional): A balanced form for Focal Loss.
|
|
Defaults to 0.25.
|
|
reduction (str, optional): The method used to reduce the loss into
|
|
a scalar. Defaults to 'mean'.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
"""
|
|
pred_sigmoid = pred.sigmoid()
|
|
target = target.type_as(pred)
|
|
pt = (1 - pred_sigmoid) * target + pred_sigmoid * (1 - target)
|
|
focal_weight = (alpha * target + (1 - alpha) *
|
|
(1 - target)) * pt.pow(gamma)
|
|
loss = F.binary_cross_entropy_with_logits(
|
|
pred, target, reduction='none') * focal_weight
|
|
if weight is not None:
|
|
if weight.shape != loss.shape:
|
|
if weight.size(0) == loss.size(0):
|
|
|
|
|
|
weight = weight.view(-1, 1)
|
|
else:
|
|
|
|
|
|
|
|
|
|
assert weight.numel() == loss.numel()
|
|
weight = weight.view(loss.size(0), -1)
|
|
assert weight.ndim == loss.ndim
|
|
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
|
|
return loss
|
|
|
|
@LOSSES.register_module(force=True)
|
|
class SimpleLoss_v1(nn.Module):
|
|
def __init__(self, pos_weight, loss_weight):
|
|
super(SimpleLoss_v1, self).__init__()
|
|
|
|
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self, ypred, ytgt):
|
|
bs, pred_class_num, bev_h, bev_w = ypred.shape
|
|
ypred = ypred.permute(0, 2, 3, 1).reshape(bs*bev_h*bev_w, pred_class_num).contiguous()
|
|
ytgt = ytgt.view(-1)
|
|
ytgt = F.one_hot(ytgt.long(), num_classes=pred_class_num+1).view(-1, pred_class_num+1)[:, 1:]
|
|
fg_mask = torch.max(ytgt, dim=1).values > 0.0
|
|
ypred = ypred[fg_mask]
|
|
ytgt = ytgt[fg_mask]
|
|
loss = F.binary_cross_entropy_with_logits(ypred, ytgt.float(), reduction='none',).sum() / max(1.0, fg_mask.sum())
|
|
return loss*self.loss_weight
|
|
|
|
@LOSSES.register_module()
|
|
class SimpleLoss(torch.nn.Module):
|
|
def __init__(self, pos_weight, loss_weight):
|
|
super(SimpleLoss, self).__init__()
|
|
self.loss_fn = torch.nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([pos_weight]))
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self, ypred, ytgt):
|
|
|
|
loss = self.loss_fn(ypred, ytgt)
|
|
return loss*self.loss_weight
|
|
|
|
@LOSSES.register_module()
|
|
class MaskFocalLoss(FocalLoss):
|
|
def __init__(self,**kwargs):
|
|
super(MaskFocalLoss, self).__init__(**kwargs)
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
if not self.use_sigmoid:
|
|
raise NotImplementedError
|
|
|
|
num_classes = pred.size(1)
|
|
loss = 0
|
|
for index in range(num_classes):
|
|
loss += self.loss_weight * py_sigmoid_focal_loss(
|
|
pred[:,index],
|
|
target[:,index],
|
|
weight,
|
|
gamma=self.gamma,
|
|
alpha=self.alpha,
|
|
reduction=reduction,
|
|
avg_factor=avg_factor)
|
|
|
|
loss /= num_classes
|
|
return loss
|
|
|