|
|
|
import torch
|
|
from torch import nn as nn
|
|
from torch.nn.functional import l1_loss, mse_loss, smooth_l1_loss
|
|
|
|
from det_map.det.dal.mmdet3d.models.builder import LOSSES
|
|
from mmdet.models import weighted_loss
|
|
import mmcv
|
|
import torch.nn.functional as F
|
|
from mmdet.core.bbox.match_costs.builder import MATCH_COST
|
|
import functools
|
|
|
|
|
|
def reduce_loss(loss, reduction):
|
|
"""Reduce loss as specified.
|
|
|
|
Args:
|
|
loss (Tensor): Elementwise loss tensor.
|
|
reduction (str): Options are "none", "mean" and "sum".
|
|
|
|
Return:
|
|
Tensor: Reduced loss tensor.
|
|
"""
|
|
reduction_enum = F._Reduction.get_enum(reduction)
|
|
|
|
if reduction_enum == 0:
|
|
return loss
|
|
elif reduction_enum == 1:
|
|
return loss.mean()
|
|
elif reduction_enum == 2:
|
|
return loss.sum()
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
def custom_weight_dir_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
|
|
"""Apply element-wise weight and reduce loss.
|
|
|
|
Args:
|
|
loss (Tensor): num_sample, num_dir
|
|
weight (Tensor): Element-wise weights.
|
|
reduction (str): Same as built-in losses of PyTorch.
|
|
avg_factor (float): Average factor when computing the mean of losses.
|
|
|
|
Returns:
|
|
Tensor: Processed loss values.
|
|
"""
|
|
|
|
if weight is not None:
|
|
loss = loss * weight
|
|
|
|
|
|
if avg_factor is None:
|
|
raise ValueError('avg_factor should not be none for OrderedPtsL1Loss')
|
|
|
|
else:
|
|
|
|
if reduction == 'mean':
|
|
|
|
|
|
loss = loss.sum()
|
|
loss = loss / avg_factor
|
|
|
|
elif reduction != 'none':
|
|
raise ValueError('avg_factor can not be used with reduction="sum"')
|
|
return loss
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
def custom_weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
|
|
"""Apply element-wise weight and reduce loss.
|
|
|
|
Args:
|
|
loss (Tensor): num_sample, num_order, num_pts, num_coords
|
|
weight (Tensor): Element-wise weights.
|
|
reduction (str): Same as built-in losses of PyTorch.
|
|
avg_factor (float): Average factor when computing the mean of losses.
|
|
|
|
Returns:
|
|
Tensor: Processed loss values.
|
|
"""
|
|
|
|
if weight is not None:
|
|
loss = loss * weight
|
|
|
|
|
|
if avg_factor is None:
|
|
raise ValueError('avg_factor should not be none for OrderedPtsL1Loss')
|
|
|
|
else:
|
|
|
|
if reduction == 'mean':
|
|
|
|
loss = loss.permute(1,0,2,3).contiguous()
|
|
loss = loss.sum((1,2,3))
|
|
loss = loss / avg_factor
|
|
|
|
elif reduction != 'none':
|
|
raise ValueError('avg_factor can not be used with reduction="sum"')
|
|
return loss
|
|
|
|
def custom_weighted_loss(loss_func):
|
|
"""Create a weighted version of a given loss function.
|
|
|
|
To use this decorator, the loss function must have the signature like
|
|
`loss_func(pred, target, **kwargs)`. The function only needs to compute
|
|
element-wise loss without any reduction. This decorator will add weight
|
|
and reduction arguments to the function. The decorated function will have
|
|
the signature like `loss_func(pred, target, weight=None, reduction='mean',
|
|
avg_factor=None, **kwargs)`.
|
|
|
|
:Example:
|
|
|
|
>>> import torch
|
|
>>> @weighted_loss
|
|
>>> def l1_loss(pred, target):
|
|
>>> return (pred - target).abs()
|
|
|
|
>>> pred = torch.Tensor([0, 2, 3])
|
|
>>> target = torch.Tensor([1, 1, 1])
|
|
>>> weight = torch.Tensor([1, 0, 1])
|
|
|
|
>>> l1_loss(pred, target)
|
|
tensor(1.3333)
|
|
>>> l1_loss(pred, target, weight)
|
|
tensor(1.)
|
|
>>> l1_loss(pred, target, reduction='none')
|
|
tensor([1., 1., 2.])
|
|
>>> l1_loss(pred, target, weight, avg_factor=2)
|
|
tensor(1.5000)
|
|
"""
|
|
|
|
@functools.wraps(loss_func)
|
|
def wrapper(pred,
|
|
target,
|
|
weight=None,
|
|
reduction='mean',
|
|
avg_factor=None,
|
|
**kwargs):
|
|
|
|
loss = loss_func(pred, target, **kwargs)
|
|
loss = custom_weight_reduce_loss(loss, weight, reduction, avg_factor)
|
|
return loss
|
|
|
|
return wrapper
|
|
|
|
|
|
def custom_weighted_dir_loss(loss_func):
|
|
"""Create a weighted version of a given loss function.
|
|
|
|
To use this decorator, the loss function must have the signature like
|
|
`loss_func(pred, target, **kwargs)`. The function only needs to compute
|
|
element-wise loss without any reduction. This decorator will add weight
|
|
and reduction arguments to the function. The decorated function will have
|
|
the signature like `loss_func(pred, target, weight=None, reduction='mean',
|
|
avg_factor=None, **kwargs)`.
|
|
|
|
:Example:
|
|
|
|
>>> import torch
|
|
>>> @weighted_loss
|
|
>>> def l1_loss(pred, target):
|
|
>>> return (pred - target).abs()
|
|
|
|
>>> pred = torch.Tensor([0, 2, 3])
|
|
>>> target = torch.Tensor([1, 1, 1])
|
|
>>> weight = torch.Tensor([1, 0, 1])
|
|
|
|
>>> l1_loss(pred, target)
|
|
tensor(1.3333)
|
|
>>> l1_loss(pred, target, weight)
|
|
tensor(1.)
|
|
>>> l1_loss(pred, target, reduction='none')
|
|
tensor([1., 1., 2.])
|
|
>>> l1_loss(pred, target, weight, avg_factor=2)
|
|
tensor(1.5000)
|
|
"""
|
|
|
|
@functools.wraps(loss_func)
|
|
def wrapper(pred,
|
|
target,
|
|
weight=None,
|
|
reduction='mean',
|
|
avg_factor=None,
|
|
**kwargs):
|
|
|
|
loss = loss_func(pred, target, **kwargs)
|
|
loss = custom_weight_dir_reduce_loss(loss, weight, reduction, avg_factor)
|
|
return loss
|
|
|
|
return wrapper
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
@custom_weighted_loss
|
|
def ordered_pts_smooth_l1_loss(pred, target):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
pred (torch.Tensor): shape [num_samples, num_pts, num_coords]
|
|
target (torch.Tensor): shape [num_samples, num_order, num_pts, num_coords]
|
|
|
|
Returns:
|
|
torch.Tensor: Calculated loss
|
|
"""
|
|
if target.numel() == 0:
|
|
return pred.sum() * 0
|
|
pred = pred.unsqueeze(1).repeat(1, target.size(1),1,1)
|
|
assert pred.size() == target.size()
|
|
loss =smooth_l1_loss(pred,target, reduction='none')
|
|
|
|
return loss
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
@weighted_loss
|
|
def pts_l1_loss(pred, target):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
pred (torch.Tensor): shape [num_samples, num_pts, num_coords]
|
|
target (torch.Tensor): shape [num_samples, num_pts, num_coords]
|
|
|
|
Returns:
|
|
torch.Tensor: Calculated loss
|
|
"""
|
|
if target.numel() == 0:
|
|
return pred.sum() * 0
|
|
assert pred.size() == target.size()
|
|
loss = torch.abs(pred - target)
|
|
return loss
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
@custom_weighted_loss
|
|
def ordered_pts_l1_loss(pred, target):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
pred (torch.Tensor): shape [num_samples, num_pts, num_coords]
|
|
target (torch.Tensor): shape [num_samples, num_order, num_pts, num_coords]
|
|
|
|
Returns:
|
|
torch.Tensor: Calculated loss
|
|
"""
|
|
if target.numel() == 0:
|
|
return pred.sum() * 0
|
|
pred = pred.unsqueeze(1).repeat(1, target.size(1),1,1)
|
|
assert pred.size() == target.size()
|
|
loss = torch.abs(pred - target)
|
|
return loss
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
@custom_weighted_dir_loss
|
|
def pts_dir_cos_loss(pred, target):
|
|
""" Dir cosine similiarity loss
|
|
pred (torch.Tensor): shape [num_samples, num_dir, num_coords]
|
|
target (torch.Tensor): shape [num_samples, num_dir, num_coords]
|
|
|
|
"""
|
|
if target.numel() == 0:
|
|
return pred.sum() * 0
|
|
|
|
num_samples, num_dir, num_coords = pred.shape
|
|
loss_func = torch.nn.CosineEmbeddingLoss(reduction='none')
|
|
tgt_param = target.new_ones((num_samples, num_dir))
|
|
tgt_param = tgt_param.flatten(0)
|
|
loss = loss_func(pred.flatten(0,1), target.flatten(0,1), tgt_param)
|
|
loss = loss.view(num_samples, num_dir)
|
|
return loss
|
|
|
|
@LOSSES.register_module()
|
|
class OrderedPtsSmoothL1Loss(nn.Module):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
reduction (str, optional): The method to reduce the loss.
|
|
Options are "none", "mean" and "sum".
|
|
loss_weight (float, optional): The weight of loss.
|
|
"""
|
|
|
|
def __init__(self, reduction='mean', loss_weight=1.0):
|
|
super(OrderedPtsSmoothL1Loss, self).__init__()
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
target (torch.Tensor): The learning target of the prediction.
|
|
weight (torch.Tensor, optional): The weight of loss for each
|
|
prediction. Defaults to None.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used to
|
|
override the original reduction method of the loss.
|
|
Defaults to None.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
|
|
loss_bbox = self.loss_weight * ordered_pts_smooth_l1_loss(
|
|
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
|
|
return loss_bbox
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class PtsDirCosLoss(nn.Module):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
reduction (str, optional): The method to reduce the loss.
|
|
Options are "none", "mean" and "sum".
|
|
loss_weight (float, optional): The weight of loss.
|
|
"""
|
|
|
|
def __init__(self, reduction='mean', loss_weight=1.0):
|
|
super(PtsDirCosLoss, self).__init__()
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
target (torch.Tensor): The learning target of the prediction.
|
|
weight (torch.Tensor, optional): The weight of loss for each
|
|
prediction. Defaults to None.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used to
|
|
override the original reduction method of the loss.
|
|
Defaults to None.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
|
|
loss_dir = self.loss_weight * pts_dir_cos_loss(
|
|
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
|
|
return loss_dir
|
|
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class PtsL1Loss(nn.Module):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
reduction (str, optional): The method to reduce the loss.
|
|
Options are "none", "mean" and "sum".
|
|
loss_weight (float, optional): The weight of loss.
|
|
"""
|
|
|
|
def __init__(self, reduction='mean', loss_weight=1.0):
|
|
super(PtsL1Loss, self).__init__()
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
target (torch.Tensor): The learning target of the prediction.
|
|
weight (torch.Tensor, optional): The weight of loss for each
|
|
prediction. Defaults to None.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used to
|
|
override the original reduction method of the loss.
|
|
Defaults to None.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
|
|
loss_bbox = self.loss_weight * pts_l1_loss(
|
|
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
|
|
return loss_bbox
|
|
|
|
@LOSSES.register_module()
|
|
class OrderedPtsL1Loss(nn.Module):
|
|
"""L1 loss.
|
|
|
|
Args:
|
|
reduction (str, optional): The method to reduce the loss.
|
|
Options are "none", "mean" and "sum".
|
|
loss_weight (float, optional): The weight of loss.
|
|
"""
|
|
|
|
def __init__(self, reduction='mean', loss_weight=1.0):
|
|
super(OrderedPtsL1Loss, self).__init__()
|
|
self.reduction = reduction
|
|
self.loss_weight = loss_weight
|
|
|
|
def forward(self,
|
|
pred,
|
|
target,
|
|
weight=None,
|
|
avg_factor=None,
|
|
reduction_override=None):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
pred (torch.Tensor): The prediction.
|
|
target (torch.Tensor): The learning target of the prediction.
|
|
weight (torch.Tensor, optional): The weight of loss for each
|
|
prediction. Defaults to None.
|
|
avg_factor (int, optional): Average factor that is used to average
|
|
the loss. Defaults to None.
|
|
reduction_override (str, optional): The reduction method used to
|
|
override the original reduction method of the loss.
|
|
Defaults to None.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
|
|
loss_bbox = self.loss_weight * ordered_pts_l1_loss(
|
|
pred, target, weight, reduction=reduction, avg_factor=avg_factor)
|
|
return loss_bbox
|
|
|
|
|
|
|
|
|
|
@MATCH_COST.register_module()
|
|
class OrderedPtsSmoothL1Cost(object):
|
|
"""OrderedPtsL1Cost.
|
|
Args:
|
|
weight (int | float, optional): loss_weight
|
|
"""
|
|
|
|
def __init__(self, weight=1.):
|
|
self.weight = weight
|
|
|
|
def __call__(self, bbox_pred, gt_bboxes):
|
|
"""
|
|
Args:
|
|
bbox_pred (Tensor): Predicted boxes with normalized coordinates
|
|
(x, y), which are all in range [0, 1]. Shape
|
|
[num_query, num_pts, 2].
|
|
gt_bboxes (Tensor): Ground truth boxes with normalized
|
|
coordinates (x,y).
|
|
Shape [num_gt, num_ordered, num_pts, 2].
|
|
Returns:
|
|
torch.Tensor: bbox_cost value with weight
|
|
"""
|
|
num_gts, num_orders, num_pts, num_coords = gt_bboxes.shape
|
|
|
|
bbox_pred = bbox_pred.view(bbox_pred.size(0),-1).unsqueeze(1).repeat(1,num_gts*num_orders,1)
|
|
gt_bboxes = gt_bboxes.flatten(2).view(num_gts*num_orders,-1).unsqueeze(0).repeat(bbox_pred.size(0),1,1)
|
|
|
|
bbox_cost = smooth_l1_loss(bbox_pred, gt_bboxes, reduction='none').sum(-1)
|
|
|
|
return bbox_cost * self.weight
|
|
|
|
@MATCH_COST.register_module()
|
|
class PtsL1Cost(object):
|
|
"""OrderedPtsL1Cost.
|
|
Args:
|
|
weight (int | float, optional): loss_weight
|
|
"""
|
|
|
|
def __init__(self, weight=1.):
|
|
self.weight = weight
|
|
|
|
def __call__(self, bbox_pred, gt_bboxes):
|
|
"""
|
|
Args:
|
|
bbox_pred (Tensor): Predicted boxes with normalized coordinates
|
|
(x, y), which are all in range [0, 1]. Shape
|
|
[num_query, num_pts, 2].
|
|
gt_bboxes (Tensor): Ground truth boxes with normalized
|
|
coordinates (x,y).
|
|
Shape [num_gt, num_ordered, num_pts, 2].
|
|
Returns:
|
|
torch.Tensor: bbox_cost value with weight
|
|
"""
|
|
num_gts, num_pts, num_coords = gt_bboxes.shape
|
|
|
|
bbox_pred = bbox_pred.view(bbox_pred.size(0),-1)
|
|
gt_bboxes = gt_bboxes.view(num_gts,-1)
|
|
bbox_cost = torch.cdist(bbox_pred, gt_bboxes, p=1)
|
|
return bbox_cost * self.weight
|
|
|
|
@MATCH_COST.register_module()
|
|
class OrderedPtsL1Cost(object):
|
|
"""OrderedPtsL1Cost.
|
|
Args:
|
|
weight (int | float, optional): loss_weight
|
|
"""
|
|
|
|
def __init__(self, weight=1.):
|
|
self.weight = weight
|
|
|
|
def __call__(self, bbox_pred, gt_bboxes):
|
|
"""
|
|
Args:
|
|
bbox_pred (Tensor): Predicted boxes with normalized coordinates
|
|
(x, y), which are all in range [0, 1]. Shape
|
|
[num_query, num_pts, 2].
|
|
gt_bboxes (Tensor): Ground truth boxes with normalized
|
|
coordinates (x,y).
|
|
Shape [num_gt, num_ordered, num_pts, 2].
|
|
Returns:
|
|
torch.Tensor: bbox_cost value with weight
|
|
"""
|
|
num_gts, num_orders, num_pts, num_coords = gt_bboxes.shape
|
|
|
|
bbox_pred = bbox_pred.view(bbox_pred.size(0),-1)
|
|
gt_bboxes = gt_bboxes.flatten(2).view(num_gts*num_orders,-1)
|
|
bbox_cost = torch.cdist(bbox_pred, gt_bboxes, p=1)
|
|
return bbox_cost * self.weight
|
|
|
|
@MATCH_COST.register_module()
|
|
class MyChamferDistanceCost:
|
|
def __init__(self, loss_src_weight=1., loss_dst_weight=1.):
|
|
|
|
|
|
self.loss_src_weight = loss_src_weight
|
|
self.loss_dst_weight = loss_dst_weight
|
|
|
|
def __call__(self, src, dst,src_weight=1.0,dst_weight=1.0,):
|
|
"""
|
|
pred_pts (Tensor): normed coordinate(x,y), shape (num_q, num_pts_M, 2)
|
|
gt_pts (Tensor): normed coordinate(x,y), shape (num_gt, num_pts_N, 2)
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src_expand = src.unsqueeze(1).repeat(1,dst.shape[0],1,1)
|
|
dst_expand = dst.unsqueeze(0).repeat(src.shape[0],1,1,1)
|
|
|
|
|
|
distance = torch.cdist(src_expand, dst_expand)
|
|
src2dst_distance = torch.min(distance, dim=3)[0]
|
|
dst2src_distance = torch.min(distance, dim=2)[0]
|
|
loss_src = (src2dst_distance * src_weight).mean(-1)
|
|
loss_dst = (dst2src_distance * dst_weight).mean(-1)
|
|
loss = loss_src*self.loss_src_weight + loss_dst * self.loss_dst_weight
|
|
return loss
|
|
|
|
@mmcv.jit(derivate=True, coderize=True)
|
|
def chamfer_distance(src,
|
|
dst,
|
|
src_weight=1.0,
|
|
dst_weight=1.0,
|
|
|
|
reduction='mean',
|
|
avg_factor=None):
|
|
"""Calculate Chamfer Distance of two sets.
|
|
|
|
Args:
|
|
src (torch.Tensor): Source set with shape [B, N, C] to
|
|
calculate Chamfer Distance.
|
|
dst (torch.Tensor): Destination set with shape [B, M, C] to
|
|
calculate Chamfer Distance.
|
|
src_weight (torch.Tensor or float): Weight of source loss.
|
|
dst_weight (torch.Tensor or float): Weight of destination loss.
|
|
criterion_mode (str): Criterion mode to calculate distance.
|
|
The valid modes are smooth_l1, l1 or l2.
|
|
reduction (str): Method to reduce losses.
|
|
The valid reduction method are 'none', 'sum' or 'mean'.
|
|
|
|
Returns:
|
|
tuple: Source and Destination loss with the corresponding indices.
|
|
|
|
- loss_src (torch.Tensor): The min distance \
|
|
from source to destination.
|
|
- loss_dst (torch.Tensor): The min distance \
|
|
from destination to source.
|
|
- indices1 (torch.Tensor): Index the min distance point \
|
|
for each point in source to destination.
|
|
- indices2 (torch.Tensor): Index the min distance point \
|
|
for each point in destination to source.
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
distance = torch.cdist(src, dst)
|
|
src2dst_distance, indices1 = torch.min(distance, dim=2)
|
|
dst2src_distance, indices2 = torch.min(distance, dim=1)
|
|
|
|
|
|
|
|
loss_src = (src2dst_distance * src_weight)
|
|
loss_dst = (dst2src_distance * dst_weight)
|
|
if avg_factor is None:
|
|
reduction_enum = F._Reduction.get_enum(reduction)
|
|
if reduction_enum == 0:
|
|
raise ValueError('MyCDLoss can not be used with reduction=`none`')
|
|
elif reduction_enum == 1:
|
|
loss_src = loss_src.mean(-1).mean()
|
|
loss_dst = loss_dst.mean(-1).mean()
|
|
elif reduction_enum == 2:
|
|
loss_src = loss_src.mean(-1).sum()
|
|
loss_dst = loss_dst.mean(-1).sum()
|
|
else:
|
|
raise NotImplementedError
|
|
else:
|
|
if reduction == 'mean':
|
|
eps = torch.finfo(torch.float32).eps
|
|
loss_src = loss_src.mean(-1).sum() / (avg_factor + eps)
|
|
loss_dst = loss_dst.mean(-1).sum() / (avg_factor + eps)
|
|
elif reduction != 'none':
|
|
raise ValueError('avg_factor can not be used with reduction="sum"')
|
|
|
|
return loss_src, loss_dst, indices1, indices2
|
|
|
|
|
|
@LOSSES.register_module()
|
|
class MyChamferDistance(nn.Module):
|
|
"""Calculate Chamfer Distance of two sets.
|
|
|
|
Args:
|
|
mode (str): Criterion mode to calculate distance.
|
|
The valid modes are smooth_l1, l1 or l2.
|
|
reduction (str): Method to reduce losses.
|
|
The valid reduction method are none, sum or mean.
|
|
loss_src_weight (float): Weight of loss_source.
|
|
loss_dst_weight (float): Weight of loss_target.
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
reduction='mean',
|
|
loss_src_weight=1.0,
|
|
loss_dst_weight=1.0):
|
|
super(MyChamferDistance, self).__init__()
|
|
|
|
|
|
assert reduction in ['none', 'sum', 'mean']
|
|
|
|
self.reduction = reduction
|
|
self.loss_src_weight = loss_src_weight
|
|
self.loss_dst_weight = loss_dst_weight
|
|
|
|
def forward(self,
|
|
source,
|
|
target,
|
|
src_weight=1.0,
|
|
dst_weight=1.0,
|
|
avg_factor=None,
|
|
reduction_override=None,
|
|
return_indices=False,
|
|
**kwargs):
|
|
"""Forward function of loss calculation.
|
|
|
|
Args:
|
|
source (torch.Tensor): Source set with shape [B, N, C] to
|
|
calculate Chamfer Distance.
|
|
target (torch.Tensor): Destination set with shape [B, M, C] to
|
|
calculate Chamfer Distance.
|
|
src_weight (torch.Tensor | float, optional):
|
|
Weight of source loss. Defaults to 1.0.
|
|
dst_weight (torch.Tensor | float, optional):
|
|
Weight of destination loss. Defaults to 1.0.
|
|
reduction_override (str, optional): Method to reduce losses.
|
|
The valid reduction method are 'none', 'sum' or 'mean'.
|
|
Defaults to None.
|
|
return_indices (bool, optional): Whether to return indices.
|
|
Defaults to False.
|
|
|
|
Returns:
|
|
tuple[torch.Tensor]: If ``return_indices=True``, return losses of \
|
|
source and target with their corresponding indices in the \
|
|
order of ``(loss_source, loss_target, indices1, indices2)``. \
|
|
If ``return_indices=False``, return \
|
|
``(loss_source, loss_target)``.
|
|
"""
|
|
assert reduction_override in (None, 'none', 'mean', 'sum')
|
|
reduction = (
|
|
reduction_override if reduction_override else self.reduction)
|
|
|
|
loss_source, loss_target, indices1, indices2 = chamfer_distance(
|
|
source, target, src_weight, dst_weight, reduction,
|
|
avg_factor=avg_factor)
|
|
|
|
loss_source *= self.loss_src_weight
|
|
loss_target *= self.loss_dst_weight
|
|
|
|
loss_pts = loss_source + loss_target
|
|
|
|
if return_indices:
|
|
return loss_pts, indices1, indices2
|
|
else:
|
|
return loss_pts
|
|
|