navsim_ours / navsim /agents /hydra /hydra_model_pe_one2many.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
16.3 kB
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
from navsim.agents.hydra.hydra_backbone_pe import HydraBackbonePE
from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.transfuser.transfuser_model import AgentHead
from navsim.agents.utils.attn import MemoryEffTransformer
from navsim.agents.utils.nerf import nerf_positional_encoding
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding
from navsim.agents.utils.positional_encoding import SinePositionalEncoding3D
from mmcv.cnn import Conv2d
class HydraModelPE_many(nn.Module):
def __init__(self, config: HydraConfig):
super().__init__()
self._query_splits = [
config.num_bounding_boxes,
]
self._config = config
assert config.backbone_type in ['vit', 'intern', 'vov', 'resnet', 'eva', 'moe', 'moe_ult32', 'swin']
if config.backbone_type == 'vit' or config.backbone_type == 'eva':
raise ValueError(f'{config.backbone_type} not supported')
elif config.backbone_type == 'intern' or config.backbone_type == 'vov' or config.backbone_type == 'swin' \
or config.backbone_type == 'resnet':
self._backbone = HydraBackbonePE(config)
self._keyval_embedding = nn.Embedding(
config.img_vert_anchors * config.img_horz_anchors, config.tf_d_model
) # 8x8 feature grid + trajectory
self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)
# usually, the BEV features are variable in size.
self.downscale_layer = nn.Conv2d(self._backbone.img_feat_c, config.tf_d_model, kernel_size=1)
self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model)
self.depth_num = 64
self.depth_start = 1
self.position_range = [-32.0, -32.0, -10.0, 32.0, 32.0, 10.0]
self.position_dim = 3 * self.depth_num
self.embed_dims = 256
self.sin_positional_encoding = dict(
type='SinePositionalEncoding3D', num_feats=128, normalize=True)
self.positional_encoding = build_positional_encoding(
self.sin_positional_encoding)
self.adapt_pos3d = nn.Sequential(
nn.Conv2d(self.embed_dims*3//2, self.embed_dims*4, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(self.embed_dims*4, self.embed_dims, kernel_size=1, stride=1, padding=0),
)
self.position_encoder = nn.Sequential(
nn.Conv2d(self.position_dim, self.embed_dims * 4, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(self.embed_dims * 4, self.embed_dims, kernel_size=1, stride=1, padding=0),
)
tf_decoder_layer = nn.TransformerDecoderLayer(
d_model=config.tf_d_model,
nhead=config.tf_num_head,
dim_feedforward=config.tf_d_ffn,
dropout=config.tf_dropout,
batch_first=True,
)
self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
self._agent_head = AgentHead(
num_agents=config.num_bounding_boxes,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
)
self._trajectory_head = HydraTrajHead(
num_poses=config.trajectory_sampling.num_poses,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
nhead=config.vadv2_head_nhead,
nlayers=config.vadv2_head_nlayers,
vocab_path=config.vocab_path,
config=config
)
def inverse_sigmoid(self, x, eps=1e-6):
"""Inverse sigmoid function.
Args:
x (Tensor): The input tensor.
eps (float): A small value to avoid numerical issues.
Returns:
Tensor: The logit value of the input.
"""
x = x.clamp(min=eps, max=1 - eps) # Ensure the input is within the valid range
return torch.log(x / (1 - x))
def position_embedding(self, features, img_features):
eps = 1e-5
img_features = img_features.unsqueeze(1)
B, N, C, tar_H, tar_W = img_features.shape
device = img_features.device
crop_top = 28
crop_left = 416
H = [self._config.img_vert_anchors for _ in range(3)]
W = [
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920),
self._config.img_horz_anchors * 1920 // (1088 * 2 + 1920),
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920)
]
# 左视图(16,17)
coords_h_l = torch.arange(H[0], device=device).float() * 1080 / H[0] + crop_top / H[0]
coords_w_l = torch.arange(W[0], device=device).float() * 1920 / W[0] + crop_left / W[0]
# 前视图(16,30)
coords_h_f = torch.arange(H[1], device=device).float() * 1080 / H[1] + crop_top / H[1]
coords_w_f = torch.arange(W[1], device=device).float() * 1920 / W[1]
# 右视图(16,17)
coords_h_r = torch.arange(H[2], device=device).float() * 1080 / H[2] + crop_top / H[2]
coords_w_r = torch.arange(W[2], device=device).float() * 1920 / W[2] + crop_left / W[2]
index = torch.arange(start=0, end=self.depth_num, step=1, device=img_features.device).float()
index_1 = index + 1
bin_size = (self.position_range[3] - self.depth_start) / (self.depth_num * (1 + self.depth_num))
coords_d = self.depth_start + bin_size * index * index_1
D = coords_d.shape[0]
coords = [1] * 3 # 0,1,2 -> front, left, right
coords[0] = torch.stack(torch.meshgrid([coords_w_l, coords_h_l, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
coords[1] = torch.stack(torch.meshgrid([coords_w_f, coords_h_f, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
coords[2] = torch.stack(torch.meshgrid([coords_w_r, coords_h_r, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
# coords = torch.cat((coords, torch.ones_like(coords[..., :1])), -1)
coords[0][..., :2] = coords[0][..., :2] * torch.max(coords[0][..., 2:3],
torch.ones_like(coords[0][..., 2:3]) * eps)
coords[1][..., :2] = coords[1][..., :2] * torch.max(coords[1][..., 2:3],
torch.ones_like(coords[1][..., 2:3]) * eps)
coords[2][..., :2] = coords[2][..., :2] * torch.max(coords[2][..., 2:3],
torch.ones_like(coords[2][..., 2:3]) * eps)
# img_meta
# img2lidars = ?
pos_3d_embed = None
for i in range(3):
sensor2lidar_rotation = features["sensor2lidar_rotation"][i]
sensor2lidar_translation = features["sensor2lidar_translation"][i]
intrinsics = features["intrinsics"][i]
combine = torch.matmul(sensor2lidar_rotation, torch.inverse(intrinsics)).float() # (B, 1, 3, 3) ?
# print(combine.shape)
# coords_front,coords_fleft,coords_fright (W, H, D, 3)
# coords3d = torch.stack((coords_front, coords_fleft, coords_fright), dim=0) # (N, W, H, D, 3) -> (B, N, W, H, D, 3, 1)
# coords = coords.view(1, H, W, D, 1, 3).repeat(B, 1, 1, 1, 1, 1)
coords3d = coords[i].view(1, N, W[i], H[i], D, 3, 1).repeat(B, 1, 1, 1, 1, 1,
1) # (B, N, W, H, D, 3, 1) -> (B, N, W, H, D, 3, 3)
combine = combine.view(B, N, 1, 1, 1, 3, 3).repeat(1, 1, W[i], H[i], D, 1, 1)
coords3d = torch.matmul(combine, coords3d).squeeze(-1) # (B, N, W, H, D, 3)
sensor2lidar_translation = sensor2lidar_translation.view(B, N, 1, 1, 1, 3)
coords3d += sensor2lidar_translation
coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / (
self.position_range[3] - self.position_range[0])
coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / (
self.position_range[4] - self.position_range[1])
coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / (
self.position_range[5] - self.position_range[2])
# coords_mask = (coords3d > 1.0) | (coords3d < 0.0)
# coords_mask = coords_mask.flatten(-2).sum(-1) > (D * 0.5)
# coords_mask = coords_mask.permute(0, 1, 3, 2)
# for j in range(1000000):
# print(coords3d.shape)
# (2, 1, 17, 16, 64, 3) -> (B, N, W, H, D, 3)
# (2, 1, 30, 16, 64, 3)
# -> (2, 1, 17+30+17, 16, 64, 3)
# coords3d = coords3d.permute(0, 1, 4, 5, 3, 2).contiguous().view(B * N, -1, H[i], W[i])
if pos_3d_embed is None:
pos_3d_embed = coords3d
else:
pos_3d_embed = torch.cat((pos_3d_embed, coords3d), dim=2)
# for i in range(100000):
# print(img_features.shape)
pos_3d_embed = pos_3d_embed.permute(0, 1, 4, 5, 3, 2).contiguous().view(B * N, -1, tar_H, tar_W)
coords3d = self.inverse_sigmoid(pos_3d_embed)
coords_position_embeding = self.position_encoder(coords3d)
return coords_position_embeding.view(B, N, self.embed_dims, tar_H, tar_W)
def forward(self, features: Dict[str, torch.Tensor],
interpolated_traj=None, is_train=True) -> Dict[str, torch.Tensor]:
# Todo egostatus
camera_feature: torch.Tensor = features["camera_feature"][0]
# lidar_feature: torch.Tensor = features["lidar_feature"]
status_feature: torch.Tensor = features["status_feature"]
batch_size = status_feature.shape[0]
assert (camera_feature.shape[0] == batch_size)
img_features = self._backbone(camera_feature)
img_features = self.downscale_layer(img_features)
input_img_h, input_img_w = img_features.size(-2), img_features.size(-1)
masks = img_features.new_ones(
(img_features.shape[0], 1, input_img_h, input_img_w))
coords_position_embeding = self.position_embedding(features, img_features)
sin_embed = self.positional_encoding(masks)
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(img_features.size())
pos_embed = coords_position_embeding.squeeze(1) + sin_embed
# img_features = img_features.copy()
img_features = img_features + pos_embed # (B, N, self.embed_dims, H, W)
img_features = img_features.flatten(-2, -1)
img_features = img_features.permute(0, 2, 1)
if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
status_encoding = self._status_encoding(status_feature[:, :8])
else:
status_encoding = self._status_encoding(status_feature)
keyval = img_features
keyval += self._keyval_embedding.weight[None, ...]
query = self._query_embedding.weight[None, ...].repeat(batch_size, 1, 1)
agents_query = self._tf_decoder(query, keyval)
output: Dict[str, torch.Tensor] = {}
trajectory = self._trajectory_head(keyval, status_encoding, interpolated_traj, is_train)
output.update(trajectory)
agents = self._agent_head(agents_query)
output.update(agents)
return output
class HydraTrajHead(nn.Module):
def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str,
nhead: int, nlayers: int, config: Vadv2Config = None
):
super().__init__()
self._num_poses = num_poses
self.transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model, nhead, d_ffn,
dropout=0.0, batch_first=True
), nlayers
)
self.vocab = nn.Parameter(
torch.from_numpy(np.load(vocab_path)),
requires_grad=False
)
self.heads = nn.ModuleDict({
'noc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'da':
nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'ttc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'comfort': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'progress': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'imi': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
)
})
self.inference_imi_weight = config.inference_imi_weight
self.inference_da_weight = config.inference_da_weight
self.normalize_vocab_pos = config.normalize_vocab_pos
if self.normalize_vocab_pos:
self.encoder = MemoryEffTransformer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.0
)
self.use_nerf = config.use_nerf
if self.use_nerf:
self.pos_embed = nn.Sequential(
nn.Linear(1040, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
else:
self.pos_embed = nn.Sequential(
nn.Linear(num_poses * 3, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
def forward(self, bev_feature, status_encoding, interpolated_traj, is_train) -> Dict[str, torch.Tensor]:
# todo sinusoidal embedding
# vocab: 4096, 40, 3
# bev_feature: B, 32, C
# embedded_vocab: B, 4096, C
vocab = self.vocab.data
L, HORIZON, _ = vocab.shape
B = bev_feature.shape[0]
if self.use_nerf:
vocab = torch.cat(
[
nerf_positional_encoding(vocab[..., :2]),
torch.cos(vocab[..., -1])[..., None],
torch.sin(vocab[..., -1])[..., None],
], dim=-1
)
if self.normalize_vocab_pos:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None]
embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1)
else:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1)
tr_out = self.transformer(embedded_vocab, bev_feature)
dist_status = tr_out + status_encoding.unsqueeze(1)
result = {}
out_one2many = {}
# selected_indices: B,
for k, head in self.heads.items():
if k == 'imi':
result[k] = head(dist_status).squeeze(-1)
else:
result[k] = head(dist_status).squeeze(-1).sigmoid()
out_one2many = result
# how
scores = (
0.05 * result['imi'].softmax(-1).log() +
0.5 * result['noc'].log() +
0.5 * result['da'].log() +
8.0 * (5 * result['ttc'] + 2 * result['comfort'] + 5 * result['progress']).log()
)
selected_indices = scores.argmax(1)
result["trajectory"] = self.vocab.data[selected_indices]
result["trajectory_vocab"] = self.vocab.data
result["selected_indices"] = selected_indices
if is_train:
_, selected_indices_top10 = torch.topk(scores, 10, dim=1)
out_one2many["trajectory"] = self.vocab.data[selected_indices_top10]
out_one2many["trajectory_vocab"] = self.vocab.data
out_one2many["selected_indices"] = selected_indices_top10
result["one_to_many"] = out_one2many
return result