|
from typing import Dict
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from navsim.agents.hydra.hydra_backbone_pe import HydraBackbonePE
|
|
from navsim.agents.hydra.hydra_config import HydraConfig
|
|
from navsim.agents.transfuser.transfuser_model import AgentHead
|
|
from navsim.agents.utils.attn import MemoryEffTransformer
|
|
from navsim.agents.utils.nerf import nerf_positional_encoding
|
|
from navsim.agents.vadv2.vadv2_config import Vadv2Config
|
|
from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding
|
|
from navsim.agents.utils.positional_encoding import SinePositionalEncoding3D
|
|
from mmcv.cnn import Conv2d
|
|
class HydraModelPE(nn.Module):
|
|
def __init__(self, config: HydraConfig):
|
|
super().__init__()
|
|
|
|
self._query_splits = [
|
|
config.num_bounding_boxes,
|
|
]
|
|
|
|
self._config = config
|
|
assert config.backbone_type in ['vit', 'intern', 'vov', 'resnet', 'eva', 'moe', 'moe_ult32', 'swin']
|
|
if config.backbone_type == 'vit' or config.backbone_type == 'eva':
|
|
raise ValueError(f'{config.backbone_type} not supported')
|
|
elif config.backbone_type == 'intern' or config.backbone_type == 'vov' or config.backbone_type == 'swin' \
|
|
or config.backbone_type == 'resnet':
|
|
self._backbone = HydraBackbonePE(config)
|
|
|
|
self._keyval_embedding = nn.Embedding(
|
|
config.img_vert_anchors * config.img_horz_anchors, config.tf_d_model
|
|
)
|
|
self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)
|
|
|
|
|
|
self.downscale_layer = nn.Conv2d(self._backbone.img_feat_c, config.tf_d_model, kernel_size=1)
|
|
self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model)
|
|
|
|
self.depth_num = 64
|
|
self.depth_start = 1
|
|
self.position_range = [-32.0, -32.0, -10.0, 32.0, 32.0, 10.0]
|
|
self.position_dim = 3 * self.depth_num
|
|
self.embed_dims = 256
|
|
self.sin_positional_encoding = dict(
|
|
type='SinePositionalEncoding3D', num_feats=128, normalize=True)
|
|
self.positional_encoding = build_positional_encoding(
|
|
self.sin_positional_encoding)
|
|
self.adapt_pos3d = nn.Sequential(
|
|
nn.Conv2d(self.embed_dims*3//2, self.embed_dims*4, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(),
|
|
nn.Conv2d(self.embed_dims*4, self.embed_dims, kernel_size=1, stride=1, padding=0),
|
|
)
|
|
self.position_encoder = nn.Sequential(
|
|
nn.Conv2d(self.position_dim, self.embed_dims * 4, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(),
|
|
nn.Conv2d(self.embed_dims * 4, self.embed_dims, kernel_size=1, stride=1, padding=0),
|
|
)
|
|
tf_decoder_layer = nn.TransformerDecoderLayer(
|
|
d_model=config.tf_d_model,
|
|
nhead=config.tf_num_head,
|
|
dim_feedforward=config.tf_d_ffn,
|
|
dropout=config.tf_dropout,
|
|
batch_first=True,
|
|
)
|
|
|
|
self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
|
|
self._agent_head = AgentHead(
|
|
num_agents=config.num_bounding_boxes,
|
|
d_ffn=config.tf_d_ffn,
|
|
d_model=config.tf_d_model,
|
|
)
|
|
|
|
self._trajectory_head = HydraTrajHead(
|
|
num_poses=config.trajectory_sampling.num_poses,
|
|
d_ffn=config.tf_d_ffn,
|
|
d_model=config.tf_d_model,
|
|
nhead=config.vadv2_head_nhead,
|
|
nlayers=config.vadv2_head_nlayers,
|
|
vocab_path=config.vocab_path,
|
|
config=config
|
|
)
|
|
|
|
def inverse_sigmoid(self, x, eps=1e-6):
|
|
"""Inverse sigmoid function.
|
|
|
|
Args:
|
|
x (Tensor): The input tensor.
|
|
eps (float): A small value to avoid numerical issues.
|
|
|
|
Returns:
|
|
Tensor: The logit value of the input.
|
|
"""
|
|
x = x.clamp(min=eps, max=1 - eps)
|
|
return torch.log(x / (1 - x))
|
|
|
|
def position_embedding(self, features, img_features):
|
|
eps = 1e-5
|
|
img_features = img_features.unsqueeze(1)
|
|
B, N, C, tar_H, tar_W = img_features.shape
|
|
device = img_features.device
|
|
crop_top = 28
|
|
crop_left = 416
|
|
H = [self._config.img_vert_anchors for _ in range(3)]
|
|
W = [
|
|
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920),
|
|
self._config.img_horz_anchors * 1920 // (1088 * 2 + 1920),
|
|
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920)
|
|
]
|
|
|
|
|
|
coords_h_l = torch.arange(H[0], device=device).float() * 1080 / H[0] + crop_top / H[0]
|
|
coords_w_l = torch.arange(W[0], device=device).float() * 1920 / W[0] + crop_left / W[0]
|
|
|
|
coords_h_f = torch.arange(H[1], device=device).float() * 1080 / H[1] + crop_top / H[1]
|
|
coords_w_f = torch.arange(W[1], device=device).float() * 1920 / W[1]
|
|
|
|
coords_h_r = torch.arange(H[2], device=device).float() * 1080 / H[2] + crop_top / H[2]
|
|
coords_w_r = torch.arange(W[2], device=device).float() * 1920 / W[2] + crop_left / W[2]
|
|
|
|
index = torch.arange(start=0, end=self.depth_num, step=1, device=img_features.device).float()
|
|
index_1 = index + 1
|
|
bin_size = (self.position_range[3] - self.depth_start) / (self.depth_num * (1 + self.depth_num))
|
|
coords_d = self.depth_start + bin_size * index * index_1
|
|
|
|
D = coords_d.shape[0]
|
|
coords = [1] * 3
|
|
coords[0] = torch.stack(torch.meshgrid([coords_w_l, coords_h_l, coords_d])).permute(1, 2, 3, 0)
|
|
coords[1] = torch.stack(torch.meshgrid([coords_w_f, coords_h_f, coords_d])).permute(1, 2, 3, 0)
|
|
coords[2] = torch.stack(torch.meshgrid([coords_w_r, coords_h_r, coords_d])).permute(1, 2, 3, 0)
|
|
|
|
coords[0][..., :2] = coords[0][..., :2] * torch.max(coords[0][..., 2:3],
|
|
torch.ones_like(coords[0][..., 2:3]) * eps)
|
|
coords[1][..., :2] = coords[1][..., :2] * torch.max(coords[1][..., 2:3],
|
|
torch.ones_like(coords[1][..., 2:3]) * eps)
|
|
coords[2][..., :2] = coords[2][..., :2] * torch.max(coords[2][..., 2:3],
|
|
torch.ones_like(coords[2][..., 2:3]) * eps)
|
|
|
|
|
|
|
|
pos_3d_embed = None
|
|
for i in range(3):
|
|
sensor2lidar_rotation = features["sensor2lidar_rotation"][i]
|
|
sensor2lidar_translation = features["sensor2lidar_translation"][i]
|
|
intrinsics = features["intrinsics"][i]
|
|
combine = torch.matmul(sensor2lidar_rotation, torch.inverse(intrinsics)).float()
|
|
|
|
|
|
|
|
|
|
|
|
coords3d = coords[i].view(1, N, W[i], H[i], D, 3, 1).repeat(B, 1, 1, 1, 1, 1,
|
|
1)
|
|
combine = combine.view(B, N, 1, 1, 1, 3, 3).repeat(1, 1, W[i], H[i], D, 1, 1)
|
|
coords3d = torch.matmul(combine, coords3d).squeeze(-1)
|
|
sensor2lidar_translation = sensor2lidar_translation.view(B, N, 1, 1, 1, 3)
|
|
coords3d += sensor2lidar_translation
|
|
|
|
coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / (
|
|
self.position_range[3] - self.position_range[0])
|
|
coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / (
|
|
self.position_range[4] - self.position_range[1])
|
|
coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / (
|
|
self.position_range[5] - self.position_range[2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if pos_3d_embed is None:
|
|
pos_3d_embed = coords3d
|
|
else:
|
|
pos_3d_embed = torch.cat((pos_3d_embed, coords3d), dim=2)
|
|
|
|
|
|
pos_3d_embed = pos_3d_embed.permute(0, 1, 4, 5, 3, 2).contiguous().view(B * N, -1, tar_H, tar_W)
|
|
coords3d = self.inverse_sigmoid(pos_3d_embed)
|
|
coords_position_embeding = self.position_encoder(coords3d)
|
|
return coords_position_embeding.view(B, N, self.embed_dims, tar_H, tar_W)
|
|
|
|
def forward(self, features: Dict[str, torch.Tensor],
|
|
interpolated_traj=None) -> Dict[str, torch.Tensor]:
|
|
|
|
camera_feature: torch.Tensor = features["camera_feature"][0]
|
|
|
|
status_feature: torch.Tensor = features["status_feature"]
|
|
|
|
batch_size = status_feature.shape[0]
|
|
assert (camera_feature.shape[0] == batch_size)
|
|
img_features = self._backbone(camera_feature)
|
|
img_features = self.downscale_layer(img_features)
|
|
input_img_h, input_img_w = img_features.size(-2), img_features.size(-1)
|
|
masks = img_features.new_ones(
|
|
(img_features.shape[0], 1, input_img_h, input_img_w))
|
|
|
|
coords_position_embeding = self.position_embedding(features, img_features)
|
|
sin_embed = self.positional_encoding(masks)
|
|
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(img_features.size())
|
|
pos_embed = coords_position_embeding.squeeze(1) + sin_embed
|
|
|
|
img_features = img_features + pos_embed
|
|
img_features = img_features.flatten(-2, -1)
|
|
img_features = img_features.permute(0, 2, 1)
|
|
|
|
if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
|
|
status_encoding = self._status_encoding(status_feature[:, :8])
|
|
else:
|
|
status_encoding = self._status_encoding(status_feature)
|
|
|
|
keyval = img_features
|
|
|
|
keyval += self._keyval_embedding.weight[None, ...]
|
|
|
|
query = self._query_embedding.weight[None, ...].repeat(batch_size, 1, 1)
|
|
agents_query = self._tf_decoder(query, keyval)
|
|
|
|
output: Dict[str, torch.Tensor] = {}
|
|
trajectory = self._trajectory_head(keyval, status_encoding, interpolated_traj)
|
|
output.update(trajectory)
|
|
agents = self._agent_head(agents_query)
|
|
output.update(agents)
|
|
|
|
return output
|
|
|
|
|
|
class HydraTrajHead(nn.Module):
|
|
def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str,
|
|
nhead: int, nlayers: int, config: Vadv2Config = None
|
|
):
|
|
super().__init__()
|
|
self._num_poses = num_poses
|
|
self.transformer = nn.TransformerDecoder(
|
|
nn.TransformerDecoderLayer(
|
|
d_model, nhead, d_ffn,
|
|
dropout=0.0, batch_first=True
|
|
), nlayers
|
|
)
|
|
self.vocab = nn.Parameter(
|
|
torch.from_numpy(np.load(vocab_path)),
|
|
requires_grad=False
|
|
)
|
|
|
|
self.heads = nn.ModuleDict({
|
|
'noc': nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
),
|
|
'da':
|
|
nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
),
|
|
'ttc': nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
),
|
|
'comfort': nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
),
|
|
'progress': nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
),
|
|
'imi': nn.Sequential(
|
|
nn.Linear(d_model, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, 1),
|
|
)
|
|
})
|
|
|
|
self.inference_imi_weight = config.inference_imi_weight
|
|
self.inference_da_weight = config.inference_da_weight
|
|
self.normalize_vocab_pos = config.normalize_vocab_pos
|
|
if self.normalize_vocab_pos:
|
|
self.encoder = MemoryEffTransformer(
|
|
d_model=d_model,
|
|
nhead=nhead,
|
|
dim_feedforward=d_model * 4,
|
|
dropout=0.0
|
|
)
|
|
self.use_nerf = config.use_nerf
|
|
|
|
if self.use_nerf:
|
|
self.pos_embed = nn.Sequential(
|
|
nn.Linear(1040, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, d_model),
|
|
)
|
|
else:
|
|
self.pos_embed = nn.Sequential(
|
|
nn.Linear(num_poses * 3, d_ffn),
|
|
nn.ReLU(),
|
|
nn.Linear(d_ffn, d_model),
|
|
)
|
|
|
|
def forward(self, bev_feature, status_encoding, interpolated_traj) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
|
|
|
|
vocab = self.vocab.data
|
|
L, HORIZON, _ = vocab.shape
|
|
B = bev_feature.shape[0]
|
|
if self.use_nerf:
|
|
vocab = torch.cat(
|
|
[
|
|
nerf_positional_encoding(vocab[..., :2]),
|
|
torch.cos(vocab[..., -1])[..., None],
|
|
torch.sin(vocab[..., -1])[..., None],
|
|
], dim=-1
|
|
)
|
|
|
|
if self.normalize_vocab_pos:
|
|
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None]
|
|
embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1)
|
|
else:
|
|
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1)
|
|
tr_out = self.transformer(embedded_vocab, bev_feature)
|
|
dist_status = tr_out + status_encoding.unsqueeze(1)
|
|
result = {}
|
|
|
|
for k, head in self.heads.items():
|
|
if k == 'imi':
|
|
result[k] = head(dist_status).squeeze(-1)
|
|
else:
|
|
result[k] = head(dist_status).squeeze(-1).sigmoid()
|
|
|
|
scores = (
|
|
0.05 * result['imi'].softmax(-1).log() +
|
|
0.5 * result['noc'].log() +
|
|
0.5 * result['da'].log() +
|
|
8.0 * (5 * result['ttc'] + 2 * result['comfort'] + 5 * result['progress']).log()
|
|
)
|
|
selected_indices = scores.argmax(1)
|
|
result["trajectory"] = self.vocab.data[selected_indices]
|
|
result["trajectory_vocab"] = self.vocab.data
|
|
result["selected_indices"] = selected_indices
|
|
return result
|
|
|