navsim_ours / navsim /agents /hydra /hydra_features.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
30.6 kB
from enum import IntEnum
from typing import Any, Dict, List, Tuple
import cv2
import numpy as np
import numpy.typing as npt
import torch
from nuplan.common.actor_state.ego_state import EgoState
from nuplan.common.actor_state.oriented_box import OrientedBox
from nuplan.common.actor_state.state_representation import StateSE2, TimePoint, StateVector2D
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType
from nuplan.common.actor_state.vehicle_parameters import get_pacifica_parameters
from nuplan.common.geometry.convert import absolute_to_relative_poses
from nuplan.common.maps.abstract_map import AbstractMap, SemanticMapLayer, MapObject
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from shapely import affinity
from shapely.geometry import Polygon, LineString
from torchvision import transforms
from det_map.data.datasets.lidar_utils import transform_points
from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.common.dataclasses import AgentInput, Scene, Annotations
from navsim.common.enums import BoundingBoxIndex, LidarIndex
from navsim.evaluate.pdm_score import transform_trajectory, get_trajectory_as_array
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import StateIndex
from navsim.planning.training.abstract_feature_target_builder import (
AbstractFeatureBuilder,
AbstractTargetBuilder,
)
class HydraFeatureBuilder(AbstractFeatureBuilder):
def __init__(self, config: HydraConfig):
self._config = config
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "transfuser_feature"
def compute_features(self, agent_input: AgentInput) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
features = {}
features["camera_feature"] = self._get_camera_feature(agent_input)
if self._config.use_back_view:
features["camera_feature_back"] = self._get_camera_feature_back(agent_input)
sensor2lidar_rotation, sensor2lidar_translation, intrinsics = [], [], []
#agent_input.cameras[-1]
# camera_timestamp = [agent_input.cameras[-2], agent_input.cameras[-1]]
camera_timestamp = [agent_input.cameras[-1]]
for camera in camera_timestamp:
sensor2lidar_rotation_tmp, sensor2lidar_translation_tmp, intrinsics_tmp = [], [], []
flag = False
for cam_k, cam in camera.to_dict().items():
features[f"intrinsics_{cam_k}"] = cam.intrinsics
features[f"sensor2lidar_rotation_{cam_k}"] = cam.sensor2lidar_rotation
features[f"sensor2lidar_translation_{cam_k}"] = cam.sensor2lidar_translation
if cam.intrinsics is not None and np.any(cam.intrinsics):
flag = True
features[f"intrinsics_{cam_k}"] = torch.tensor(features[f"intrinsics_{cam_k}"])
features[f"sensor2lidar_rotation_{cam_k}"] = torch.tensor(features[f"sensor2lidar_rotation_{cam_k}"])
features[f"sensor2lidar_translation_{cam_k}"] = torch.tensor(features[f"sensor2lidar_translation_{cam_k}"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_l0"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_f0"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_r0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_l0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_f0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_r0"])
intrinsics_tmp.append(features["intrinsics_cam_l0"])
intrinsics_tmp.append(features["intrinsics_cam_f0"])
intrinsics_tmp.append(features["intrinsics_cam_r0"])
if flag:
sensor2lidar_rotation = sensor2lidar_rotation_tmp
sensor2lidar_translation = sensor2lidar_translation_tmp
intrinsics = intrinsics_tmp
# sensor2lidar_rotation.append(torch.stack(sensor2lidar_rotation_tmp))
# sensor2lidar_translation.append(torch.stack(sensor2lidar_translation_tmp))
# intrinsics.append(torch.stack(intrinsics_tmp))
else:
sensor2lidar_rotation.append(None)
sensor2lidar_translation.append(None)
intrinsics.append(None)
features["sensor2lidar_rotation"] = sensor2lidar_rotation
features["sensor2lidar_translation"] = sensor2lidar_translation
features["intrinsics"] = intrinsics
if self._config.use_pers_bev_embed:
features["pers_bev"] = self._get_pers_bev(agent_input)
ego_status_list = []
for i in range(self._config.num_ego_status):
# i=0: idx=-1
# i=1: idx=-2
# i=2: idx=-3
# i=3: idx=-4
idx = - (i + 1)
ego_status_list += [
torch.tensor(agent_input.ego_statuses[idx].driving_command, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[idx].ego_velocity, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[idx].ego_acceleration, dtype=torch.float32),
]
features["status_feature"] = torch.concatenate(
ego_status_list
)
return features
def _get_camera_feature(self, agent_input: AgentInput) -> torch.Tensor:
"""
Extract stitched camera from AgentInput
:param agent_input: input dataclass
:return: stitched front view image as torch tensor
"""
# print(len(agent_input.cameras), len(agent_input.timestamps))
# print(agent_input.cameras[-2], agent_input.cameras[-1])
# cameras = [agent_input.cameras[-1]
cameras = agent_input.cameras
# for i in range(10000):
# print(len(cameras))
image_list = []
for camera in cameras:
image = camera.cam_l0.image
if image is not None and image.size > 0 and np.any(image):
l0 = camera.cam_l0.image[28:-28, 416:-416]
f0 = camera.cam_f0.image[28:-28]
r0 = camera.cam_r0.image[28:-28, 416:-416]
# Crop to ensure 4:1 aspect ratio
# l0 = cameras.cam_l0.image[28:-28, 416:-416]
# f0 = cameras.cam_f0.image[28:-28]
# r0 = cameras.cam_r0.image[28:-28, 416:-416]
# stitch l0, f0, r0 images
stitched_image = np.concatenate([l0, f0, r0], axis=1)
# assert (self._config.camera_width==)
# print(self._config.camera_width, self._config.camera_height)
resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
tensor_image = transforms.ToTensor()(resized_image)
# print(tensor_image.shape)
image_list.append(tensor_image)
else:
# if camera.cam_l0.image.all() == None:
image_list.append(None)
return image_list
def _get_camera_feature_back(self, agent_input: AgentInput) -> torch.Tensor:
cameras = agent_input.cameras[-1]
# Crop to ensure 4:1 aspect ratio
l2 = cameras.cam_l2.image[28:-28, 416:-416]
b0 = cameras.cam_b0.image[28:-28]
r2 = cameras.cam_r2.image[28:-28, 416:-416]
# stitch l0, f0, r0 images
stitched_image = np.concatenate([l2, b0, r2], axis=1)
resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
tensor_image = transforms.ToTensor()(resized_image)
return tensor_image
class HydraTargetBuilder(AbstractTargetBuilder):
def __init__(self, config: HydraConfig):
self._config = config
self.v_params = get_pacifica_parameters()
# lidar_resolution_width = 256
# lidar_resolution_height = 256
# self.dense_layers: List[SemanticMapLayer] = [
# SemanticMapLayer.DRIVABLE_AREA,
# SemanticMapLayer.CROSSWALK
# ]
# self.dense_layers_labels = [
# 1, 2
# ]
# self.discrete_layers: List[SemanticMapLayer] = [
# SemanticMapLayer.LANE,
# SemanticMapLayer.LANE_CONNECTOR,
# ]
# self.radius = 32.0
# self.bev_pixel_width: int = lidar_resolution_width
# self.bev_pixel_height: int = lidar_resolution_height
# self.bev_pixel_size: float = 0.25
# self.bev_semantic_frame = (self.bev_pixel_height, self.bev_pixel_width)
# self.padding_value = -10000
# self.sample_dist = 1
# self.num_samples = 250
# self.padding = False
# self.fixed_num = 20
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "transfuser_target"
def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
future_traj = scene.get_future_trajectory(
num_trajectory_frames=self._config.trajectory_sampling.num_poses
)
trajectory = torch.tensor(future_traj.poses)
frame_idx = scene.scene_metadata.num_history_frames - 1
annotations = scene.frames[frame_idx].annotations
ego_pose = StateSE2(*scene.frames[frame_idx].ego_status.ego_pose)
agent_states, agent_labels = self._compute_agent_targets(annotations)
bev_semantic_map = self._compute_bev_semantic_map(annotations, scene.map_api, ego_pose)
ego_state = EgoState.build_from_rear_axle(
StateSE2(*scene.frames[frame_idx].ego_status.ego_pose),
tire_steering_angle=0.0,
vehicle_parameters=self.v_params,
time_point=TimePoint(scene.frames[frame_idx].timestamp),
rear_axle_velocity_2d=StateVector2D(
*scene.frames[frame_idx].ego_status.ego_velocity
),
rear_axle_acceleration_2d=StateVector2D(
*scene.frames[frame_idx].ego_status.ego_acceleration
),
)
trans_traj = transform_trajectory(
future_traj, ego_state
)
interpolated_traj = get_trajectory_as_array(
trans_traj,
TrajectorySampling(num_poses=40, interval_length=0.1),
ego_state.time_point
)
rel_poses = absolute_to_relative_poses([StateSE2(*tmp) for tmp in
interpolated_traj[:, StateIndex.STATE_SE2]])
# skip the curr frame
final_traj = [pose.serialize() for pose in rel_poses[1:]]
final_traj = torch.tensor(final_traj)
#TODO:map
# map_api = scene.map_api
# ego_statuses = [frame.ego_status for frame in scene.frames]
# ego2globals = [frame.ego2global for frame in scene.frames]
# # Last one is the current frame
# ego_status_curr = StateSE2(*ego_statuses[-1].ego_pose)
# # dense
# # dense_semantic_map = np.zeros(self.bev_semantic_frame, dtype=np.int64)
# # for layer, label in zip(self.dense_layers, self.dense_layers_labels):
# # entity_mask = self._compute_map_polygon_mask(map_api, ego_status_curr, [layer])
# # dense_semantic_map[entity_mask] = label
# # discrete
# # centerline_list
# map_dict = {'centerline': []}
# line_strings, incoming_line_strings, outcoming_line_strings = self._compute_map_linestrings(map_api,
# ego_status_curr,
# list(
# self.discrete_layers))
# centerline_list = self.union_centerline(line_strings, incoming_line_strings, outcoming_line_strings)
# for instance in centerline_list:
# map_dict['centerline'].append(np.array(instance.coords))
# vectors = []
# gt_labels = []
# gt_instance = []
# instance_list = map_dict['centerline']
# for instance in instance_list:
# vectors.append(LineString(np.array(instance)))
# for instance in vectors:
# gt_instance.append(instance)
# gt_labels.append(0)
# gt_semantic_mask = None
# gt_pv_semantic_mask = None
# gt_instance = LiDARInstanceLines(gt_instance, self.sample_dist, self.num_samples,
# self.padding, self.fixed_num, self.padding_value, patch_size=self.radius * 2)
return {
#"gt_depth":?????????????
# "gt_bboxes_3d": gt_instance,
# "gt_labels_3d": gt_labels,
"trajectory": trajectory,
"agent_states": agent_states,
"agent_labels": agent_labels,
"bev_semantic_map": bev_semantic_map,
"interpolated_traj": final_traj
}
def _compute_agent_targets(self, annotations: Annotations) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Extracts 2D agent bounding boxes in ego coordinates
:param annotations: annotation dataclass
:return: tuple of bounding box values and labels (binary)
"""
max_agents = self._config.num_bounding_boxes
agent_states_list: List[npt.NDArray[np.float32]] = []
def _xy_in_lidar(x: float, y: float, config: Vadv2Config) -> bool:
return (config.lidar_min_x <= x <= config.lidar_max_x) and (
config.lidar_min_y <= y <= config.lidar_max_y
)
for box, name in zip(annotations.boxes, annotations.names):
box_x, box_y, box_heading, box_length, box_width = (
box[BoundingBoxIndex.X],
box[BoundingBoxIndex.Y],
box[BoundingBoxIndex.HEADING],
box[BoundingBoxIndex.LENGTH],
box[BoundingBoxIndex.WIDTH],
)
if name == "vehicle" and _xy_in_lidar(box_x, box_y, self._config):
agent_states_list.append(
np.array([box_x, box_y, box_heading, box_length, box_width], dtype=np.float32)
)
agents_states_arr = np.array(agent_states_list)
# filter num_instances nearest
agent_states = np.zeros((max_agents, BoundingBox2DIndex.size()), dtype=np.float32)
agent_labels = np.zeros(max_agents, dtype=bool)
if len(agents_states_arr) > 0:
distances = np.linalg.norm(agents_states_arr[..., BoundingBox2DIndex.POINT], axis=-1)
argsort = np.argsort(distances)[:max_agents]
# filter detections
agents_states_arr = agents_states_arr[argsort]
agent_states[: len(agents_states_arr)] = agents_states_arr
agent_labels[: len(agents_states_arr)] = True
return torch.tensor(agent_states), torch.tensor(agent_labels)
def _compute_bev_semantic_map(
self, annotations: Annotations, map_api: AbstractMap, ego_pose: StateSE2
) -> torch.Tensor:
"""
Creates sematic map in BEV
:param annotations: annotation dataclass
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:return: 2D torch tensor of semantic labels
"""
bev_semantic_map = np.zeros(self._config.bev_semantic_frame, dtype=np.int64)
for label, (entity_type, layers) in self._config.bev_semantic_classes.items():
if entity_type == "polygon":
entity_mask = self._compute_map_polygon_mask(map_api, ego_pose, layers)
elif entity_type == "linestring":
entity_mask = self._compute_map_linestring_mask(map_api, ego_pose, layers)
else:
entity_mask = self._compute_box_mask(annotations, layers)
bev_semantic_map[entity_mask] = label
return torch.Tensor(bev_semantic_map)
def _geometry_local_coords(self, geometry: Any, origin: StateSE2) -> Any:
"""
Transform shapely geometry in local coordinates of origin.
:param geometry: shapely geometry
:param origin: pose dataclass
:return: shapely geometry
"""
a = np.cos(origin.heading)
b = np.sin(origin.heading)
d = -np.sin(origin.heading)
e = np.cos(origin.heading)
xoff = -origin.x
yoff = -origin.y
translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])
return rotated_geometry
def _coords_to_pixel(self, coords):
"""
Transform local coordinates in pixel indices of BEV map
:param coords: _description_
:return: _description_
"""
# NOTE: remove half in backward direction
pixel_center = np.array([[0, self.bev_pixel_width / 2.0]])
coords_idcs = (coords / self.bev_pixel_size) + pixel_center
return coords_idcs.astype(np.int32)
def _compute_map_linestrings(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> npt.NDArray[np.bool_]:
"""
Compute binary of linestring given a map layer class
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: binary mask as numpy array
"""
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self.radius, layers=layers
)
something = []
incoming_something = []
outcoming_something = []
for layer in layers:
for map_object in map_object_dict[layer]:
linestring: LineString = self._geometry_local_coords(
map_object.baseline_path.linestring, ego_pose
)
something.append(linestring)
for incoming_edge in map_object.incoming_edges:
incomingstring: LineString = self._geometry_local_coords(
incoming_edge.baseline_path.linestring, ego_pose
)
incoming_something.append(incomingstring)
for outgoing_edge in map_object.outgoing_edges:
outcomingstring: LineString = self._geometry_local_coords(
outgoing_edge.baseline_path.linestring, ego_pose
)
outcoming_something.append(outcomingstring)
# todo
points = np.array(linestring.coords).reshape((-1, 1, 2))
return something, incoming_something, outcoming_something
def union_centerline(self, centerline_list, incoming_list, outcoming_list):
pts_G = nx.DiGraph()
junction_pts_list = []
start_pt = np.array(centerline_list[0].coords).round(3)[0]
end_pt = np.array(centerline_list[-1].coords).round(3)[-1]
for centerline_geom in centerline_list:
centerline_pts = np.array(centerline_geom.coords).round(3)
start_pt = centerline_pts[0]
end_pt = centerline_pts[-1]
for idx, pts in enumerate(centerline_pts[:-1]):
pts_G.add_edge(tuple(centerline_pts[idx]), tuple(centerline_pts[idx + 1]))
valid_incoming_num = 0
for pred_geom in incoming_list:
valid_incoming_num += 1
pred_pt = np.array(pred_geom.coords).round(3)[-1]
pts_G.add_edge(tuple(pred_pt), tuple(start_pt))
valid_outgoing_num = 0
for succ_geom in outcoming_list:
valid_outgoing_num += 1
succ_pt = np.array(succ_geom.coords).round(3)[0]
pts_G.add_edge(tuple(end_pt), tuple(succ_pt))
roots = (v for v, d in pts_G.in_degree() if d == 0)
leaves = [v for v, d in pts_G.out_degree() if d == 0]
all_paths = []
for root in roots:
paths = nx.all_simple_paths(pts_G, root, leaves)
all_paths.extend(paths)
final_centerline_paths = []
for path in all_paths:
merged_line = LineString(path)
merged_line = merged_line.simplify(0.2, preserve_topology=True)
final_centerline_paths.append(merged_line)
return final_centerline_paths
# def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
# map_api = scene.map_api
# ego_statuses = [frame.ego_status for frame in scene.frames]
# ego2globals = [frame.ego2global for frame in scene.frames]
# # Last one is the current frame
# ego_status_curr = StateSE2(*ego_statuses[-1].ego_pose)
#
# # dense
# # dense_semantic_map = np.zeros(self.bev_semantic_frame, dtype=np.int64)
# # for layer, label in zip(self.dense_layers, self.dense_layers_labels):
# # entity_mask = self._compute_map_polygon_mask(map_api, ego_status_curr, [layer])
# # dense_semantic_map[entity_mask] = label
#
# # discrete
# # centerline_list
# map_dict = {'centerline': []}
# line_strings, incoming_line_strings, outcoming_line_strings = self._compute_map_linestrings(map_api,
# ego_status_curr,
# list(
# self.discrete_layers))
# centerline_list = self.union_centerline(line_strings, incoming_line_strings, outcoming_line_strings)
# for instance in centerline_list:
# map_dict['centerline'].append(np.array(instance.coords))
#
# vectors = []
# gt_labels = []
# gt_instance = []
# instance_list = map_dict['centerline']
# for instance in instance_list:
# vectors.append(LineString(np.array(instance)))
# for instance in vectors:
# gt_instance.append(instance)
# gt_labels.append(0)
# gt_semantic_mask = None
# gt_pv_semantic_mask = None
# gt_instance = LiDARInstanceLines(gt_instance, self.sample_dist, self.num_samples,
# self.padding, self.fixed_num, self.padding_value, patch_size=self.radius * 2)
#
# return {"dense_el": None,
# "gt_bboxes_3d": gt_instance,
# "gt_labels_3d": gt_labels}
def _compute_map_polygon_mask(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> npt.NDArray[np.bool_]:
"""
Compute binary mask given a map layer class
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: binary mask as numpy array
"""
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self._config.bev_radius, layers=layers
)
map_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for layer in layers:
for map_object in map_object_dict[layer]:
polygon: Polygon = self._geometry_local_coords(map_object.polygon, ego_pose)
exterior = np.array(polygon.exterior.coords).reshape((-1, 1, 2))
exterior = self._coords_to_pixel(exterior)
cv2.fillPoly(map_polygon_mask, [exterior], color=255)
# OpenCV has origin on top-left corner
map_polygon_mask = np.rot90(map_polygon_mask)[::-1]
return map_polygon_mask > 0
def _compute_map_linestring_mask(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> npt.NDArray[np.bool_]:
"""
Compute binary of linestring given a map layer class
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: binary mask as numpy array
"""
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self._config.bev_radius, layers=layers
)
map_linestring_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for layer in layers:
for map_object in map_object_dict[layer]:
linestring: LineString = self._geometry_local_coords(
map_object.baseline_path.linestring, ego_pose
)
points = np.array(linestring.coords).reshape((-1, 1, 2))
points = self._coords_to_pixel(points)
cv2.polylines(map_linestring_mask, [points], isClosed=False, color=255, thickness=2)
# OpenCV has origin on top-left corner
map_linestring_mask = np.rot90(map_linestring_mask)[::-1]
return map_linestring_mask > 0
def _compute_box_mask(
self, annotations: Annotations, layers: TrackedObjectType
) -> npt.NDArray[np.bool_]:
"""
Compute binary of bounding boxes in BEV space
:param annotations: annotation dataclass
:param layers: bounding box labels to include
:return: binary mask as numpy array
"""
box_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for name_value, box_value in zip(annotations.names, annotations.boxes):
agent_type = tracked_object_types[name_value]
if agent_type in layers:
# box_value = (x, y, z, length, width, height, yaw) TODO: add intenum
x, y, heading = box_value[0], box_value[1], box_value[-1]
box_length, box_width, box_height = box_value[3], box_value[4], box_value[5]
agent_box = OrientedBox(StateSE2(x, y, heading), box_length, box_width, box_height)
exterior = np.array(agent_box.geometry.exterior.coords).reshape((-1, 1, 2))
exterior = self._coords_to_pixel(exterior)
cv2.fillPoly(box_polygon_mask, [exterior], color=255)
# OpenCV has origin on top-left corner
box_polygon_mask = np.rot90(box_polygon_mask)[::-1]
return box_polygon_mask > 0
@staticmethod
def _query_map_objects(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> List[MapObject]:
"""
Queries map objects
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: list of map objects
"""
# query map api with interesting layers
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self, layers=layers
)
map_objects: List[MapObject] = []
for layer in layers:
map_objects += map_object_dict[layer]
return map_objects
@staticmethod
def _geometry_local_coords(geometry: Any, origin: StateSE2) -> Any:
"""
Transform shapely geometry in local coordinates of origin.
:param geometry: shapely geometry
:param origin: pose dataclass
:return: shapely geometry
"""
a = np.cos(origin.heading)
b = np.sin(origin.heading)
d = -np.sin(origin.heading)
e = np.cos(origin.heading)
xoff = -origin.x
yoff = -origin.y
translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])
return rotated_geometry
def _coords_to_pixel(self, coords):
"""
Transform local coordinates in pixel indices of BEV map
:param coords: _description_
:return: _description_
"""
# NOTE: remove half in backward direction
pixel_center = np.array([[0, self._config.bev_pixel_width / 2.0]])
coords_idcs = (coords / self._config.bev_pixel_size) + pixel_center
return coords_idcs.astype(np.int32)
class BoundingBox2DIndex(IntEnum):
_X = 0
_Y = 1
_HEADING = 2
_LENGTH = 3
_WIDTH = 4
@classmethod
def size(cls):
valid_attributes = [
attribute
for attribute in dir(cls)
if attribute.startswith("_")
and not attribute.startswith("__")
and not callable(getattr(cls, attribute))
]
return len(valid_attributes)
@classmethod
@property
def X(cls):
return cls._X
@classmethod
@property
def Y(cls):
return cls._Y
@classmethod
@property
def HEADING(cls):
return cls._HEADING
@classmethod
@property
def LENGTH(cls):
return cls._LENGTH
@classmethod
@property
def WIDTH(cls):
return cls._WIDTH
@classmethod
@property
def POINT(cls):
# assumes X, Y have subsequent indices
return slice(cls._X, cls._Y + 1)
@classmethod
@property
def STATE_SE2(cls):
# assumes X, Y, HEADING have subsequent indices
return slice(cls._X, cls._HEADING + 1)