navsim_ours / navsim /agents /dm /dm_features.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
13.2 kB
from enum import IntEnum
from typing import Any, Dict, List, Tuple
import cv2
import numpy as np
import numpy.typing as npt
import torch
from nuplan.common.actor_state.ego_state import EgoState
from nuplan.common.actor_state.oriented_box import OrientedBox
from nuplan.common.actor_state.state_representation import StateSE2, TimePoint, StateVector2D
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType
from nuplan.common.actor_state.vehicle_parameters import get_pacifica_parameters
from nuplan.common.geometry.convert import absolute_to_relative_poses
from nuplan.common.maps.abstract_map import AbstractMap, SemanticMapLayer, MapObject
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from shapely import affinity
from shapely.geometry import Polygon, LineString
from torchvision import transforms
from navsim.agents.dm.dm_config import DMConfig
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.common.dataclasses import AgentInput, Scene, Annotations
from navsim.common.enums import BoundingBoxIndex
from navsim.evaluate.pdm_score import transform_trajectory, get_trajectory_as_array
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import StateIndex
from navsim.planning.training.abstract_feature_target_builder import (
AbstractFeatureBuilder,
AbstractTargetBuilder,
)
class DMFeatureBuilder(AbstractFeatureBuilder):
def __init__(self, config: DMConfig):
self._config = config
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "dm_feature"
def compute_features(self, agent_input: AgentInput) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
features = {}
features["camera_feature"] = self._get_camera_feature(agent_input)
if self._config.use_back_view:
features["camera_feature_back"] = self._get_camera_feature_back(agent_input)
sensor2lidar_rotation, sensor2lidar_translation, intrinsics = [], [], []
# agent_input.cameras[-1]
# camera_timestamp = [agent_input.cameras[-2], agent_input.cameras[-1]]
camera_timestamp = [agent_input.cameras[-1]]
for camera in camera_timestamp:
sensor2lidar_rotation_tmp, sensor2lidar_translation_tmp, intrinsics_tmp = [], [], []
flag = False
for cam_k, cam in camera.to_dict().items():
features[f"intrinsics_{cam_k}"] = cam.intrinsics
features[f"sensor2lidar_rotation_{cam_k}"] = cam.sensor2lidar_rotation
features[f"sensor2lidar_translation_{cam_k}"] = cam.sensor2lidar_translation
if cam.intrinsics is not None and np.any(cam.intrinsics):
flag = True
features[f"intrinsics_{cam_k}"] = torch.tensor(features[f"intrinsics_{cam_k}"])
features[f"sensor2lidar_rotation_{cam_k}"] = torch.tensor(
features[f"sensor2lidar_rotation_{cam_k}"])
features[f"sensor2lidar_translation_{cam_k}"] = torch.tensor(
features[f"sensor2lidar_translation_{cam_k}"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_l0"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_f0"])
sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_r0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_l0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_f0"])
sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_r0"])
intrinsics_tmp.append(features["intrinsics_cam_l0"])
intrinsics_tmp.append(features["intrinsics_cam_f0"])
intrinsics_tmp.append(features["intrinsics_cam_r0"])
if flag:
sensor2lidar_rotation = sensor2lidar_rotation_tmp
sensor2lidar_translation = sensor2lidar_translation_tmp
intrinsics = intrinsics_tmp
# sensor2lidar_rotation.append(torch.stack(sensor2lidar_rotation_tmp))
# sensor2lidar_translation.append(torch.stack(sensor2lidar_translation_tmp))
# intrinsics.append(torch.stack(intrinsics_tmp))
else:
sensor2lidar_rotation.append(None)
sensor2lidar_translation.append(None)
intrinsics.append(None)
features["sensor2lidar_rotation"] = sensor2lidar_rotation
features["sensor2lidar_translation"] = sensor2lidar_translation
features["intrinsics"] = intrinsics
ego_status_list = []
for i in range(self._config.num_ego_status):
# i=0: idx=-1
# i=1: idx=-2
# i=2: idx=-3
# i=3: idx=-4
idx = - (i + 1)
ego_status_list += [
torch.tensor(agent_input.ego_statuses[idx].driving_command, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[idx].ego_velocity, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[idx].ego_acceleration, dtype=torch.float32),
]
features["status_feature"] = torch.concatenate(
ego_status_list
)
features["history_waypoints"] = torch.concatenate(
[torch.tensor(agent_input.ego_statuses[-2].ego_pose, dtype=torch.float32)[None],
torch.tensor(agent_input.ego_statuses[-1].ego_pose, dtype=torch.float32)[None]],
dim=0)
return features
def _get_camera_feature(self, agent_input: AgentInput) -> torch.Tensor:
"""
Extract stitched camera from AgentInput
:param agent_input: input dataclass
:return: stitched front view image as torch tensor
"""
# print(len(agent_input.cameras), len(agent_input.timestamps))
# print(agent_input.cameras[-2], agent_input.cameras[-1])
cameras = [agent_input.cameras[-1]]
image_list = []
for camera in cameras:
image = camera.cam_l0.image
if image is not None and image.size > 0 and np.any(image):
l0 = camera.cam_l0.image[28:-28, 416:-416]
f0 = camera.cam_f0.image[28:-28]
r0 = camera.cam_r0.image[28:-28, 416:-416]
# Crop to ensure 4:1 aspect ratio
# l0 = cameras.cam_l0.image[28:-28, 416:-416]
# f0 = cameras.cam_f0.image[28:-28]
# r0 = cameras.cam_r0.image[28:-28, 416:-416]
# stitch l0, f0, r0 images
stitched_image = np.concatenate([l0, f0, r0], axis=1)
# assert (self._config.camera_width==)
# print(self._config.camera_width, self._config.camera_height)
resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
tensor_image = transforms.ToTensor()(resized_image)
# print(tensor_image.shape)
image_list.append(tensor_image)
else:
# if camera.cam_l0.image.all() == None:
image_list.append(None)
return image_list
def _get_camera_feature_back(self, agent_input: AgentInput) -> torch.Tensor:
cameras = agent_input.cameras[-1]
# Crop to ensure 4:1 aspect ratio
l2 = cameras.cam_l2.image[28:-28, 416:-416]
b0 = cameras.cam_b0.image[28:-28]
r2 = cameras.cam_r2.image[28:-28, 416:-416]
# stitch l0, f0, r0 images
stitched_image = np.concatenate([l2, b0, r2], axis=1)
resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
tensor_image = transforms.ToTensor()(resized_image)
return tensor_image
class DMTargetBuilder(AbstractTargetBuilder):
def __init__(self, config: DMConfig):
self._config = config
self.v_params = get_pacifica_parameters()
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "dm_target"
def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
future_traj = scene.get_future_trajectory(
num_trajectory_frames=self._config.trajectory_sampling.num_poses
)
trajectory = torch.tensor(future_traj.poses)
frame_idx = scene.scene_metadata.num_history_frames - 1
annotations = scene.frames[frame_idx].annotations
agent_states, agent_labels = self._compute_agent_targets(annotations)
ego_state = EgoState.build_from_rear_axle(
StateSE2(*scene.frames[frame_idx].ego_status.ego_pose),
tire_steering_angle=0.0,
vehicle_parameters=self.v_params,
time_point=TimePoint(scene.frames[frame_idx].timestamp),
rear_axle_velocity_2d=StateVector2D(
*scene.frames[frame_idx].ego_status.ego_velocity
),
rear_axle_acceleration_2d=StateVector2D(
*scene.frames[frame_idx].ego_status.ego_acceleration
),
)
trans_traj = transform_trajectory(
future_traj, ego_state
)
interpolated_traj = get_trajectory_as_array(
trans_traj,
TrajectorySampling(num_poses=40, interval_length=0.1),
ego_state.time_point
)
rel_poses = absolute_to_relative_poses([StateSE2(*tmp) for tmp in
interpolated_traj[:, StateIndex.STATE_SE2]])
# skip the curr frame
final_traj = [pose.serialize() for pose in rel_poses[1:]]
final_traj = torch.tensor(final_traj)
return {
"trajectory": trajectory,
"agent_states": agent_states,
"agent_labels": agent_labels,
"interpolated_traj": final_traj
}
def _compute_agent_targets(self, annotations: Annotations) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Extracts 2D agent bounding boxes in ego coordinates
:param annotations: annotation dataclass
:return: tuple of bounding box values and labels (binary)
"""
max_agents = self._config.num_bounding_boxes
agent_states_list: List[npt.NDArray[np.float32]] = []
def _xy_in_lidar(x: float, y: float, config: Vadv2Config) -> bool:
return (config.lidar_min_x <= x <= config.lidar_max_x) and (
config.lidar_min_y <= y <= config.lidar_max_y
)
for box, name in zip(annotations.boxes, annotations.names):
box_x, box_y, box_heading, box_length, box_width = (
box[BoundingBoxIndex.X],
box[BoundingBoxIndex.Y],
box[BoundingBoxIndex.HEADING],
box[BoundingBoxIndex.LENGTH],
box[BoundingBoxIndex.WIDTH],
)
if name == "vehicle" and _xy_in_lidar(box_x, box_y, self._config):
agent_states_list.append(
np.array([box_x, box_y, box_heading, box_length, box_width], dtype=np.float32)
)
agents_states_arr = np.array(agent_states_list)
# filter num_instances nearest
agent_states = np.zeros((max_agents, BoundingBox2DIndex.size()), dtype=np.float32)
agent_labels = np.zeros(max_agents, dtype=bool)
if len(agents_states_arr) > 0:
distances = np.linalg.norm(agents_states_arr[..., BoundingBox2DIndex.POINT], axis=-1)
argsort = np.argsort(distances)[:max_agents]
# filter detections
agents_states_arr = agents_states_arr[argsort]
agent_states[: len(agents_states_arr)] = agents_states_arr
agent_labels[: len(agents_states_arr)] = True
return torch.tensor(agent_states), torch.tensor(agent_labels)
class BoundingBox2DIndex(IntEnum):
_X = 0
_Y = 1
_HEADING = 2
_LENGTH = 3
_WIDTH = 4
@classmethod
def size(cls):
valid_attributes = [
attribute
for attribute in dir(cls)
if attribute.startswith("_")
and not attribute.startswith("__")
and not callable(getattr(cls, attribute))
]
return len(valid_attributes)
@classmethod
@property
def X(cls):
return cls._X
@classmethod
@property
def Y(cls):
return cls._Y
@classmethod
@property
def HEADING(cls):
return cls._HEADING
@classmethod
@property
def LENGTH(cls):
return cls._LENGTH
@classmethod
@property
def WIDTH(cls):
return cls._WIDTH
@classmethod
@property
def POINT(cls):
# assumes X, Y have subsequent indices
return slice(cls._X, cls._Y + 1)
@classmethod
@property
def STATE_SE2(cls):
# assumes X, Y, HEADING have subsequent indices
return slice(cls._X, cls._HEADING + 1)