agent="hydra_pe_temporal" | |
# train without cache, good for debugging model | |
cache=null | |
# run cache_dataset.sh first, good for training | |
#cache="your cache path" | |
# use navtrain : train split | |
config="default_training" | |
# use navtrain : train split + val split | |
#config="competition_training" | |
bs=8 | |
lr=0.0001 | |
epoch=20 | |
dir=${agent}_ckpt | |
# | |
##git pull; | |
#python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
# --config-name $config \ | |
# agent=$agent \ | |
# ~trainer.params.strategy \ | |
# experiment_name=$dir \ | |
# cache_path=null\ | |
# agent.config.ckpt_path=$dir \ | |
# split=trainval \ | |
# trainer.params.max_epochs=$epoch \ | |
# dataloader.params.batch_size=$bs \ | |
# agent.lr=$lr \ | |
# scene_filter=navtrain | |
#agent="hydra_pe" | |
#bs=8 | |
#lr=0.0001 | |
#cache=null | |
#resume="epoch19.ckpt" | |
#config="competition_training" | |
#sync_bn=False | |
#epoch=25 | |
#replicas=8 | |
#dir=${agent}_vov_sine_bs${bs}x${replicas}_ckpt | |
#python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
# --config-name $config \ | |
# agent=$agent \ | |
# +resume_ckpt_path=\${NAVSIM_EXP_ROOT}/$dir/$resume \ | |
# trainer.params.num_nodes=$replicas \ | |
# trainer.params.max_epochs=$epoch \ | |
# +trainer.params.sync_batchnorm=$sync_bn \ | |
# ~trainer.params.strategy \ | |
# dataloader.params.batch_size=$bs \ | |
# experiment_name=$dir \ | |
# cache_path=$cache \ | |
# agent.config.ckpt_path=$dir \ | |
# agent.lr=$lr \ | |
# split=trainval \ | |
# scene_filter=navtrain; | |
#git pull; | |
python ${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
--config-name=tiny_training \ | |
cache_path=null \ | |
experiment_name=debug \ | |
agent.config.ckpt_path=debug \ | |
agent=hydra_pe_temporal \ | |
agent.pdm_split=tiny \ | |
split=tiny \ | |
scene_filter=navtiny \ | |
dataloader.params.batch_size=2 \ | |
dataloader.params.num_workers=0 \ | |
dataloader.params.pin_memory=false \ | |
dataloader.params.prefetch_factor=null \ | |
~trainer.params.strategy |