|
from typing import Any, List, Dict, Union
|
|
|
|
import torch
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import LRScheduler
|
|
import pytorch_lightning as pl
|
|
|
|
from navsim.agents.abstract_agent import AbstractAgent
|
|
from navsim.common.dataclasses import SensorConfig
|
|
from navsim.planning.training.abstract_feature_target_builder import (
|
|
AbstractFeatureBuilder,
|
|
AbstractTargetBuilder,
|
|
)
|
|
from navsim.agents.transfuser.transfuser_config import TransfuserConfig
|
|
from navsim.agents.transfuser.transfuser_model import TransfuserModel
|
|
from navsim.agents.transfuser.transfuser_callback import TransfuserCallback
|
|
from navsim.agents.transfuser.transfuser_loss import transfuser_loss
|
|
from navsim.agents.transfuser.transfuser_features import (
|
|
TransfuserFeatureBuilder,
|
|
TransfuserTargetBuilder,
|
|
)
|
|
|
|
|
|
class TransfuserAgent(AbstractAgent):
|
|
def __init__(
|
|
self,
|
|
config: TransfuserConfig,
|
|
lr: float,
|
|
checkpoint_path: str = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self._config = config
|
|
self._lr = lr
|
|
|
|
self._checkpoint_path = checkpoint_path
|
|
self._transfuser_model = TransfuserModel(config)
|
|
|
|
def name(self) -> str:
|
|
"""Inherited, see superclass."""
|
|
|
|
return self.__class__.__name__
|
|
|
|
def initialize(self) -> None:
|
|
"""Inherited, see superclass."""
|
|
if torch.cuda.is_available():
|
|
state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"]
|
|
else:
|
|
state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
|
|
self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})
|
|
|
|
def get_sensor_config(self) -> SensorConfig:
|
|
"""Inherited, see superclass."""
|
|
return SensorConfig.build_all_sensors(include=[3])
|
|
|
|
def get_target_builders(self) -> List[AbstractTargetBuilder]:
|
|
return [TransfuserTargetBuilder(config=self._config)]
|
|
|
|
def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
|
|
return [TransfuserFeatureBuilder(config=self._config)]
|
|
|
|
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
return self._transfuser_model(features)
|
|
|
|
def compute_loss(
|
|
self,
|
|
features: Dict[str, torch.Tensor],
|
|
targets: Dict[str, torch.Tensor],
|
|
predictions: Dict[str, torch.Tensor],
|
|
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
|
|
return transfuser_loss(targets, predictions, self._config)
|
|
|
|
def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
|
|
return torch.optim.Adam(self._transfuser_model.parameters(), lr=self._lr)
|
|
|
|
def get_training_callbacks(self) -> List[pl.Callback]:
|
|
return [TransfuserCallback(self._config)]
|
|
|