|
from typing import Dict |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from navsim.agents.hydra_plantf.hydra_plantf_config import HydraPlantfConfig |
|
from navsim.agents.hydra_plantf.model_utils import MapEncoder, AgentEncoder, CustomTransformerEncoderLayer |
|
from navsim.agents.utils.attn import MemoryEffTransformer |
|
from navsim.agents.utils.nerf import nerf_positional_encoding |
|
from navsim.agents.vadv2.vadv2_config import Vadv2Config |
|
|
|
|
|
class HydraPlantfModel(nn.Module): |
|
def __init__(self, config: HydraPlantfConfig): |
|
super().__init__() |
|
self._config = config |
|
self.map_encoder = MapEncoder( |
|
dim=config.tf_d_model, |
|
polygon_channel=6 |
|
) |
|
self.agent_encoder = AgentEncoder( |
|
agent_channel=8, |
|
dim=config.tf_d_model, |
|
) |
|
|
|
self.blocks = nn.ModuleList( |
|
CustomTransformerEncoderLayer(dim=config.tf_d_model, num_heads=config.tf_num_head, drop_path=dp) |
|
for dp in [x.item() for x in torch.linspace(0, 0.2, config.tf_num_encoder_layers)] |
|
) |
|
self.norm = nn.LayerNorm(config.tf_d_model) |
|
|
|
self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model) |
|
self._trajectory_head = HydraTrajPlantfHead( |
|
num_poses=config.trajectory_sampling.num_poses, |
|
d_ffn=config.tf_d_ffn, |
|
d_model=config.tf_d_model, |
|
nhead=config.vadv2_head_nhead, |
|
nlayers=config.vadv2_head_nlayers, |
|
vocab_path=config.vocab_path, |
|
config=config |
|
) |
|
|
|
def forward(self, features: Dict[str, torch.Tensor], |
|
interpolated_traj=None) -> Dict[str, torch.Tensor]: |
|
status_feature: torch.Tensor = features["status_feature"] |
|
|
|
if self._config.num_ego_status == 1 and status_feature.shape[1] == 32: |
|
status_encoding = self._status_encoding(status_feature[:, :8]) |
|
else: |
|
status_encoding = self._status_encoding(status_feature) |
|
|
|
agent_features = self.agent_encoder(features['agent']) |
|
map_features = self.map_encoder(features['map']) |
|
|
|
key_padding_mask = torch.cat([ |
|
~(features['agent']['valid_mask']), |
|
~(features['map']['valid_mask'].any(-1)) |
|
], dim=-1) |
|
|
|
x = torch.cat([agent_features, map_features], dim=1) |
|
for blk in self.blocks: |
|
x = blk(x, key_padding_mask=key_padding_mask) |
|
keyval = self.norm(x) |
|
|
|
output: Dict[str, torch.Tensor] = {} |
|
trajectory = self._trajectory_head(keyval, status_encoding) |
|
output.update(trajectory) |
|
|
|
return output |
|
|
|
|
|
class HydraTrajPlantfHead(nn.Module): |
|
def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str, |
|
nhead: int, nlayers: int, config: Vadv2Config = None |
|
): |
|
super().__init__() |
|
self._num_poses = num_poses |
|
self.transformer = nn.TransformerDecoder( |
|
nn.TransformerDecoderLayer( |
|
d_model, nhead, d_ffn, |
|
dropout=0.0, batch_first=True |
|
), nlayers |
|
) |
|
self.vocab = nn.Parameter( |
|
torch.from_numpy(np.load(vocab_path)), |
|
requires_grad=False |
|
) |
|
|
|
self.heads = nn.ModuleDict({ |
|
'noc': nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
), |
|
'da': |
|
nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
), |
|
'ttc': nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
), |
|
'comfort': nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
), |
|
'progress': nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
), |
|
'imi': nn.Sequential( |
|
nn.Linear(d_model, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, 1), |
|
) |
|
}) |
|
|
|
self.inference_imi_weight = config.inference_imi_weight |
|
self.inference_da_weight = config.inference_da_weight |
|
self.normalize_vocab_pos = config.normalize_vocab_pos |
|
if self.normalize_vocab_pos: |
|
self.encoder = MemoryEffTransformer( |
|
d_model=d_model, |
|
nhead=nhead, |
|
dim_feedforward=d_model * 4, |
|
dropout=0.0 |
|
) |
|
self.use_nerf = config.use_nerf |
|
|
|
if self.use_nerf: |
|
self.pos_embed = nn.Sequential( |
|
nn.Linear(1040, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, d_model), |
|
) |
|
else: |
|
self.pos_embed = nn.Sequential( |
|
nn.Linear(num_poses * 3, d_ffn), |
|
nn.ReLU(), |
|
nn.Linear(d_ffn, d_model), |
|
) |
|
|
|
def forward(self, bev_feature, status_encoding, interpolated_traj=None) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
|
|
|
|
vocab = self.vocab.data |
|
L, HORIZON, _ = vocab.shape |
|
B = bev_feature.shape[0] |
|
if self.use_nerf: |
|
vocab = torch.cat( |
|
[ |
|
nerf_positional_encoding(vocab[..., :2]), |
|
torch.cos(vocab[..., -1])[..., None], |
|
torch.sin(vocab[..., -1])[..., None], |
|
], dim=-1 |
|
) |
|
|
|
if self.normalize_vocab_pos: |
|
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None] |
|
embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1) |
|
else: |
|
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1) |
|
tr_out = self.transformer(embedded_vocab, bev_feature) |
|
dist_status = tr_out + status_encoding.unsqueeze(1) |
|
result = {} |
|
|
|
for k, head in self.heads.items(): |
|
if k == 'imi': |
|
result[k] = head(dist_status).squeeze(-1) |
|
else: |
|
result[k] = head(dist_status).squeeze(-1).sigmoid() |
|
scores = ( |
|
0.05 * result['imi'].softmax(-1).log() + |
|
0.5 * result['noc'].log() + |
|
0.5 * result['da'].log() + |
|
8.0 * (5 * result['ttc'] + 2 * result['comfort'] + 5 * result['progress']).log() |
|
) |
|
selected_indices = scores.argmax(1) |
|
result["trajectory"] = self.vocab.data[selected_indices] |
|
result["trajectory_vocab"] = self.vocab.data |
|
result["selected_indices"] = selected_indices |
|
return result |
|
|