navsim_ours / det_map /det /det_agent.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
3.05 kB
from __future__ import annotations
from typing import Any, List, Dict
import numpy as np
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from det_map.data.datasets.dataclasses import SensorConfig, Scene
from det_map.data.datasets.feature_builders import LiDARCameraFeatureBuilder
from navsim.agents.abstract_agent import AbstractAgent
from navsim.planning.training.abstract_feature_target_builder import AbstractFeatureBuilder, AbstractTargetBuilder
class DetTargetBuilder(AbstractTargetBuilder):
def __init__(self, pipelines):
super().__init__()
self.pipelines = pipelines
# self.vehicle_params = get_pacifica_parameters()
def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
anno_boxes = [frame.annotations.boxes for frame in scene.frames]
labels = [frame.annotations.names for frame in scene.frames]
velos = [frame.annotations.velocity_3d[:, :2] for frame in scene.frames]
final = [torch.from_numpy(np.concatenate([box, velo], axis=-1))
for box, velo in zip(anno_boxes, velos)]
# final box should be [x,y,z,l,w,h,theta,vx,vy]
return {"dets": final, "labels": labels}
class DetAgent(AbstractAgent):
def __init__(
self,
model,
pipelines,
lr: float,
checkpoint_path: str = None, **kwargs
):
super().__init__()
# todo eval everything
self.model = model
self.pipelines = pipelines
self._checkpoint_path = checkpoint_path
self._lr = lr
def name(self) -> str:
"""Inherited, see superclass."""
return self.__class__.__name__
def initialize(self) -> None:
"""Inherited, see superclass."""
state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"]
self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})
def get_sensor_config(self) -> SensorConfig:
"""Inherited, see superclass."""
return SensorConfig.build_all_sensors(True)
def get_target_builders(self) -> List[AbstractTargetBuilder]:
return [
DetTargetBuilder(self.pipelines),
]
def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
return [
LiDARCameraFeatureBuilder(self.pipelines)
]
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
return {"dets": None}
def compute_loss(
self,
features: Dict[str, torch.Tensor],
targets: Dict[str, torch.Tensor],
predictions: Dict[str, torch.Tensor],
) -> torch.Tensor:
return torch.nn.functional.l1_loss(predictions["dets"], targets["dets"])
def get_optimizers(self) -> Optimizer | Dict[str, Optimizer | LRScheduler]:
return torch.optim.Adam(self._mlp.parameters(), lr=self._lr)