File size: 9,326 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from typing import Dict

import numpy as np
import torch
import torch.nn as nn

from navsim.agents.transfuser.transfuser_backbone import TransfuserBackbone
from navsim.agents.transfuser.transfuser_backbone_conv import TransfuserBackboneConv
from navsim.agents.transfuser.transfuser_backbone_moe import TransfuserBackboneMoe
from navsim.agents.transfuser.transfuser_backbone_moe_ult32 import TransfuserBackboneMoeUlt32
from navsim.agents.transfuser.transfuser_backbone_vit import TransfuserBackboneViT
from navsim.agents.transfuser.transfuser_model import AgentHead
from navsim.agents.utils.attn import MemoryEffTransformer
from navsim.agents.utils.nerf import nerf_positional_encoding
from navsim.agents.vadv2.vadv2_config import Vadv2Config


class Vadv2ModelPDMProgressAblate(nn.Module):
    def __init__(self, config: Vadv2Config):
        super().__init__()

        self._query_splits = [
            config.num_bounding_boxes,
        ]

        self._config = config
        assert config.backbone_type in ['vit', 'intern', 'vov', 'resnet', 'eva', 'moe', 'moe_ult32', 'swin']
        if config.backbone_type == 'vit' or config.backbone_type == 'eva':
            self._backbone = TransfuserBackboneViT(config)
        elif config.backbone_type == 'intern' or config.backbone_type == 'vov' or config.backbone_type == 'swin':
            self._backbone = TransfuserBackboneConv(config)
        elif config.backbone_type == 'moe':
            self._backbone = TransfuserBackboneMoe(config)
        elif config.backbone_type == 'moe_ult32':
            self._backbone = TransfuserBackboneMoeUlt32(config)
        else:
            self._backbone = TransfuserBackbone(config)

        bev_size = config.lidar_vert_anchors * config.lidar_horz_anchors
        bev_c = self._backbone.lidar_encoder.feature_info.info[4]['num_chs']

        self._keyval_embedding = nn.Embedding(
            bev_size, config.tf_d_model
        )  # 8x8 feature grid + trajectory
        self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)

        # usually, the BEV features are variable in size.
        self._bev_downscale = nn.Conv2d(bev_c, config.tf_d_model, kernel_size=1)
        # todo drop ego status like plantf
        # assert config.num_ego_status == 1
        # assert not config.use_nerf
        self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model)

        self._bev_semantic_head = nn.Sequential(
            nn.Conv2d(
                config.bev_features_channels,
                config.bev_features_channels,
                kernel_size=(3, 3),
                stride=1,
                padding=(1, 1),
                bias=True,
            ),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                config.bev_features_channels,
                config.num_bev_classes,
                kernel_size=(1, 1),
                stride=1,
                padding=0,
                bias=True,
            ),
            nn.Upsample(
                size=(config.lidar_resolution_height // 2, config.lidar_resolution_width),
                mode="bilinear",
                align_corners=False,
            ),
        )

        tf_decoder_layer = nn.TransformerDecoderLayer(
            d_model=config.tf_d_model,
            nhead=config.tf_num_head,
            dim_feedforward=config.tf_d_ffn,
            dropout=config.tf_dropout,
            batch_first=True,
        )

        self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
        self._agent_head = AgentHead(
            num_agents=config.num_bounding_boxes,
            d_ffn=config.tf_d_ffn,
            d_model=config.tf_d_model,
        )

        self._trajectory_head = Vadv2HeadPDMProgress(
            num_poses=config.trajectory_sampling.num_poses,
            d_ffn=config.tf_d_ffn,
            d_model=config.tf_d_model,
            nhead=config.vadv2_head_nhead,
            nlayers=config.vadv2_head_nlayers,
            vocab_path=config.vocab_path,
            config=config
        )

    def forward(self, features: Dict[str, torch.Tensor],

                interpolated_traj=None) -> Dict[str, torch.Tensor]:
        # Todo egostatus
        camera_feature: torch.Tensor = features["camera_feature"]
        lidar_feature: torch.Tensor = features["lidar_feature"]
        status_feature: torch.Tensor = features["status_feature"]

        batch_size = status_feature.shape[0]

        bev_feature_upscale, bev_feature, _ = self._backbone(camera_feature, lidar_feature)

        bev_feature = self._bev_downscale(bev_feature).flatten(-2, -1)
        bev_feature = bev_feature.permute(0, 2, 1)

        if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
            status_encoding = self._status_encoding(status_feature[:, :8])
        else:
            status_encoding = self._status_encoding(status_feature)

        keyval = bev_feature
        keyval += self._keyval_embedding.weight[None, ...]

        query = self._query_embedding.weight[None, ...].repeat(batch_size, 1, 1)
        agents_query = self._tf_decoder(query, keyval)

        bev_semantic_map = self._bev_semantic_head(bev_feature_upscale)

        output: Dict[str, torch.Tensor] = {"bev_semantic_map": bev_semantic_map}
        # 轨迹预测head
        trajectory = self._trajectory_head(keyval, status_encoding, interpolated_traj)
        output.update(trajectory)

        agents = self._agent_head(agents_query)
        output.update(agents)

        return output


class Vadv2HeadPDMProgress(nn.Module):
    def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str,

                 nhead: int, nlayers: int, config: Vadv2Config = None

                 ):
        super().__init__()
        self._num_poses = num_poses
        self.transformer = nn.TransformerDecoder(
            nn.TransformerDecoderLayer(
                d_model, nhead, d_ffn,
                dropout=0.0, batch_first=True
            ), nlayers
        )
        self.vocab = nn.Parameter(
            torch.from_numpy(np.load(vocab_path)),
            requires_grad=False
        )

        self.heads = nn.ModuleDict({
            'total': nn.Sequential(
                nn.Linear(d_model, d_ffn),
                nn.ReLU(),
                nn.Linear(d_ffn, 1),
            ),
            'imi': nn.Sequential(
                nn.Linear(d_model, d_ffn),
                nn.ReLU(),
                nn.Linear(d_ffn, d_ffn),
                nn.ReLU(),
                nn.Linear(d_ffn, 1),
            )
        })

        self.inference_imi_weight = config.inference_imi_weight
        self.inference_da_weight = config.inference_da_weight
        self.normalize_vocab_pos = config.normalize_vocab_pos
        if self.normalize_vocab_pos:
            self.encoder = MemoryEffTransformer(
                d_model=d_model,
                nhead=nhead,
                dim_feedforward=d_model * 4,
                dropout=0.0
            )
        self.use_nerf = config.use_nerf

        if self.use_nerf:
            self.pos_embed = nn.Sequential(
                nn.Linear(1040, d_ffn),
                nn.ReLU(),
                nn.Linear(d_ffn, d_model),
            )
        else:
            self.pos_embed = nn.Sequential(
                nn.Linear(num_poses * 3, d_ffn),
                nn.ReLU(),
                nn.Linear(d_ffn, d_model),
            )

    def forward(self, bev_feature, status_encoding, interpolated_traj) -> Dict[str, torch.Tensor]:
        # todo sinusoidal embedding
        # vocab: 4096, 40, 3
        # bev_feature: B, 32, C
        # embedded_vocab: B, 4096, C
        vocab = self.vocab.data
        L, HORIZON, _ = vocab.shape
        B = bev_feature.shape[0]
        if self.use_nerf:
            vocab = torch.cat(
                [
                    nerf_positional_encoding(vocab[..., :2]),
                    torch.cos(vocab[..., -1])[..., None],
                    torch.sin(vocab[..., -1])[..., None],
                ], dim=-1
            )

        if self.normalize_vocab_pos:
            embedded_vocab = self.pos_embed(vocab.view(L, -1))[None]
            embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1)
        else:
            embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1)
        tr_out = self.transformer(embedded_vocab, bev_feature)
        dist_status = tr_out + status_encoding.unsqueeze(1)
        result = {}
        # selected_indices: B,
        for k, head in self.heads.items():
            if k == 'imi':
                result[k] = head(dist_status).squeeze(-1)
            else:
                result[k] = head(dist_status).squeeze(-1).sigmoid()
        # how
        scores = (
            result['imi'].softmax(-1).log() + result['total'].log()
        )
        selected_indices = scores.argmax(1)
        result["trajectory"] = self.vocab.data[selected_indices]
        result["trajectory_vocab"] = self.vocab.data
        result["selected_indices"] = selected_indices
        return result