File size: 8,035 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import pickle
from typing import Any, Union

import numpy as np
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler

from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.agents.vadv2.vadv2_features import (
    Vadv2FeatureBuilder,
    Vadv2TargetBuilder,
)
from navsim.agents.vadv2.vadv2_loss import vadv2_loss_pdm_w_progress
from navsim.agents.vadv2.vadv2_pdm_model_progress import Vadv2ModelPDMProgress
from navsim.common.dataclasses import SensorConfig
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)

DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT')
TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT')

from typing import Dict, List

import pytorch_lightning as pl
import torch
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling

from navsim.agents.abstract_agent import AbstractAgent
from navsim.common.dataclasses import Trajectory


class Vadv2AgentPDMProgress(AbstractAgent):
    def __init__(

            self,

            config: Vadv2Config,

            lr: float,

            checkpoint_path: str = None,

            pdm_split=None,

            metrics=None,

    ):
        super().__init__()
        config.trajectory_pdm_weight = {
            'noc': 3.0,
            'da': 3.0,
            'ttc': 2.0,
            'progress': config.progress_weight,
            'comfort': 1.0,
        }
        self._config = config
        self._lr = lr
        self.metrics = metrics
        self._checkpoint_path = checkpoint_path
        self.vadv2_model = Vadv2ModelPDMProgress(config)
        self.vocab_size = config.vocab_size
        self.backbone_wd = config.backbone_wd
        new_pkl_dir = f'vocab_score_full_{self.vocab_size}_navtrain'
        self.vocab_pdm_score_full = pickle.load(
            open(f'{TRAJ_PDM_ROOT}/{new_pkl_dir}/{pdm_split}.pkl', 'rb'))

    def name(self) -> str:
        """Inherited, see superclass."""

        return self.__class__.__name__

    def initialize(self) -> None:
        """Inherited, see superclass."""
        # if torch.cuda.is_available():
        #     state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"]
        # else:
        #     state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))[
        #         "state_dict"]
        state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
        self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})

    def get_sensor_config(self) -> SensorConfig:
        """Inherited, see superclass."""
        return SensorConfig.build_mm_sensors()

    def get_target_builders(self) -> List[AbstractTargetBuilder]:
        return [Vadv2TargetBuilder(config=self._config)]

    def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
        return [Vadv2FeatureBuilder(config=self._config)]

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        return self.vadv2_model(features)

    def forward_train(self, features, interpolated_traj):
        return self.vadv2_model(features, interpolated_traj)

    def compute_loss(

            self,

            features: Dict[str, torch.Tensor],

            targets: Dict[str, torch.Tensor],

            predictions: Dict[str, torch.Tensor],

            tokens=None

    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        # get the pdm score by tokens
        scores = {}
        for k in self.metrics:
            tmp = [self.vocab_pdm_score_full[token][k][None] for token in tokens]
            scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0))
                         .to(predictions['trajectory'].device))
        return vadv2_loss_pdm_w_progress(targets, predictions, self._config, scores)

    def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
        if self._config.backbone_type == 'moe':
            backbone_params_eva = '_backbone.image_encoder.eva'
            backbone_params_da = '_backbone.image_encoder.davit'
            img_backbone_params = list(
                filter(lambda kv: backbone_params_eva in kv[0] or backbone_params_da in kv[0], self.vadv2_model.named_parameters())
            )
            default_params = list(filter(lambda kv: backbone_params_da not in kv[0] and backbone_params_eva not in kv[0], self.vadv2_model.named_parameters()))
            params_lr_dict = [
                {'params': [tmp[1] for tmp in default_params]},
                {
                    'params': [tmp[1] for tmp in img_backbone_params],
                    'lr': self._lr * self._config.lr_mult_backbone,
                    'weight_decay': self.backbone_wd
                }
            ]
            return torch.optim.Adam(params_lr_dict, lr=self._lr)
        backbone_params_name = '_backbone.image_encoder'
        img_backbone_params = list(
            filter(lambda kv: backbone_params_name in kv[0], self.vadv2_model.named_parameters()))
        default_params = list(filter(lambda kv: backbone_params_name not in kv[0], self.vadv2_model.named_parameters()))
        params_lr_dict = [
            {'params': [tmp[1] for tmp in default_params]},
            {
                'params': [tmp[1] for tmp in img_backbone_params],
                'lr': self._lr * self._config.lr_mult_backbone,
                'weight_decay': self.backbone_wd
            }
        ]
        return torch.optim.Adam(params_lr_dict, lr=self._lr)

    def get_training_callbacks(self) -> List[pl.Callback]:
        return [
            # TransfuserCallback(self._config),
            ModelCheckpoint(
                save_top_k=30,
                monitor="val/loss_epoch",
                mode="min",
                dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/",
                filename="{epoch:02d}-{step:04d}",
            )
        ]

    def compute_trajectory(self, agent_input):
        """

        Submission

        """
        self.eval()
        features: Dict[str, torch.Tensor] = {}
        # build features
        for builder in self.get_feature_builders():
            features.update(builder.compute_features(agent_input))

        # add batch dimension
        features = {k: v.unsqueeze(0).cuda() for k, v in features.items()}
        vocab = self.vadv2_model._trajectory_head.vocab
        self.vadv2_model = self.vadv2_model.cuda()
        # forward pass
        with torch.no_grad():
            predictions = self.vadv2_model(features)

        imis = predictions["imi"].softmax(-1).log().cpu().numpy()
        nocs = predictions["noc"].log().cpu().numpy()
        das = predictions["da"].log().cpu().numpy()
        ttcs = predictions["ttc"].log().cpu().numpy()
        comforts = predictions["comfort"].log().cpu().numpy()
        progresses = predictions["progress"].log().cpu().numpy()

        imi_weight = 0.1
        noc_weight = 0.25
        da_weight = 2.0
        ttc_weight = 3.0
        progress_weight = 5.0
        comfort_weight = 1.0
        tpc_weight = 2.25

        # A temporary trajectory for choosing the best epoch -> for grid search
        score = (
                imi_weight * imis +
                noc_weight * nocs +
                da_weight * das +
                tpc_weight * (
                        ttc_weight * ttcs +
                        comfort_weight * comforts +
                        progress_weight * progresses
                )
        )[0].argmax(0)
        traj = vocab[score].cpu().numpy()
        return Trajectory(traj,
                          TrajectorySampling(time_horizon=4, interval_length=0.1))