File size: 19,913 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
from __future__ import annotations

import io
import os

from pathlib import Path
import numpy as np
import numpy.typing as npt
from PIL import Image

from navsim.planning.simulation.planner.pdm_planner.utils.pdm_geometry_utils import (
    convert_absolute_to_relative_se2_array,
)

from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from nuplan.common.actor_state.state_representation import StateSE2
from nuplan.common.maps.abstract_map import AbstractMap
from nuplan.common.maps.nuplan_map.map_factory import get_maps_api
from nuplan.database.maps_db.gpkg_mapsdb import MAP_LOCATIONS
from nuplan.database.utils.pointclouds.lidar import LidarPointCloud

from pyquaternion import Quaternion
from dataclasses import dataclass, asdict
from typing import Any, Dict, List, Optional, Tuple, BinaryIO, Union


NAVSIM_INTERVAL_LENGTH: float = 0.5
OPENSCENE_DATA_ROOT = os.environ.get("OPENSCENE_DATA_ROOT")
NUPLAN_MAPS_ROOT = os.environ.get("NUPLAN_MAPS_ROOT")


@dataclass
class Camera:
    image: Optional[npt.NDArray[np.float32]] = None

    sensor2lidar_rotation: Optional[npt.NDArray[np.float32]] = None
    sensor2lidar_translation: Optional[npt.NDArray[np.float32]] = None
    intrinsics: Optional[npt.NDArray[np.float32]] = None
    distortion: Optional[npt.NDArray[np.float32]] = None


@dataclass
class Cameras:

    cam_f0: Camera
    cam_l0: Camera
    cam_l1: Camera
    cam_l2: Camera
    cam_r0: Camera
    cam_r1: Camera
    cam_r2: Camera
    cam_b0: Camera

    def to_dict(self):
        result = {
            'cam_f0': self.cam_f0,
            'cam_l0': self.cam_l0,
            'cam_l1': self.cam_l1,
            'cam_l2': self.cam_l2,
            'cam_r0': self.cam_r0,
            'cam_r1': self.cam_r1,
            'cam_r2': self.cam_r2,
            'cam_b0': self.cam_b0
        }
        return result

    @classmethod
    def from_camera_dict(

        cls,

        sensor_blobs_path: Path,

        camera_dict: Dict[str, Any],

        sensor_names: List[str],

    ) -> Cameras:

        data_dict: Dict[str, Camera] = {}
        for camera_name in camera_dict.keys():
            camera_identifier = camera_name.lower()
            if camera_identifier in sensor_names:
                image_path = sensor_blobs_path / camera_dict[camera_name]["data_path"]
                data_dict[camera_identifier] = Camera(
                    image=np.array(Image.open(image_path)),
                    sensor2lidar_rotation=camera_dict[camera_name]["sensor2lidar_rotation"],
                    sensor2lidar_translation=camera_dict[camera_name]["sensor2lidar_translation"],
                    intrinsics=camera_dict[camera_name]["cam_intrinsic"],
                    distortion=camera_dict[camera_name]["distortion"],
                )
            else:
                data_dict[camera_identifier] = Camera()  # empty camera

        return Cameras(
            cam_f0=data_dict["cam_f0"],
            cam_l0=data_dict["cam_l0"],
            cam_l1=data_dict["cam_l1"],
            cam_l2=data_dict["cam_l2"],
            cam_r0=data_dict["cam_r0"],
            cam_r1=data_dict["cam_r1"],
            cam_r2=data_dict["cam_r2"],
            cam_b0=data_dict["cam_b0"],
        )


@dataclass
class Lidar:

    # NOTE:
    # merged lidar point cloud as (6,n) float32 array with n points
    # first axis: (x, y, z, intensity, ring, lidar_id), see LidarIndex
    lidar_pc: Optional[npt.NDArray[np.float32]] = None

    @staticmethod
    def _load_bytes(lidar_path: Path) -> BinaryIO:
        with open(lidar_path, "rb") as fp:
            return io.BytesIO(fp.read())

    @classmethod
    def from_paths(

        cls,

        sensor_blobs_path: Path,

        lidar_path: Path,

        sensor_names: List[str],

    ) -> Lidar:

        # NOTE: this could be extended to load specific LiDARs in the merged pc
        if "lidar_pc" in sensor_names:
            global_lidar_path = sensor_blobs_path / lidar_path
            lidar_pc = LidarPointCloud.from_buffer(cls._load_bytes(global_lidar_path), "pcd").points
            return Lidar(lidar_pc)
        return Lidar()  # empty lidar


@dataclass
class EgoStatus:

    ego_pose: npt.NDArray[np.float64]
    ego_velocity: npt.NDArray[np.float32]
    ego_acceleration: npt.NDArray[np.float32]
    driving_command: npt.NDArray[np.int]
    in_global_frame: bool = False  # False for AgentInput


@dataclass
class AgentInput:

    ego_statuses: List[EgoStatus]
    cameras: List[Cameras]
    lidars: List[Lidar]

    timestamps: List[int]
    ego2globals: List[np.ndarray]

    @classmethod
    def from_scene_dict_list_with_gt_traj(

        cls,

        scene_dict_list: List[Dict],

        sensor_blobs_path: Path,

        num_history_frames: int,

        sensor_config: SensorConfig,

    ) -> Tuple[AgentInput, Trajectory]:
        agent_input = AgentInput.from_scene_dict_list(
            scene_dict_list, sensor_blobs_path, num_history_frames, sensor_config
        )
        scene = Scene.from_scene_dict_list(
            scene_dict_list, sensor_blobs_path, num_history_frames, 10, sensor_config
        )
        return agent_input, scene.get_future_trajectory(int(4 / 0.5))


    @classmethod
    def from_scene_dict_list(

        cls,

        scene_dict_list: List[Dict],

        sensor_blobs_path: Path,

        num_history_frames: int,

        sensor_config: SensorConfig,

    ) -> AgentInput:
        assert len(scene_dict_list) > 0, "Scene list is empty!"

        global_ego_poses = []
        for frame_idx in range(num_history_frames):
            ego_translation = scene_dict_list[frame_idx]["ego2global_translation"]
            ego_quaternion = Quaternion(*scene_dict_list[frame_idx]["ego2global_rotation"])
            global_ego_pose = np.array(
                [ego_translation[0], ego_translation[1], ego_quaternion.yaw_pitch_roll[0]],
                dtype=np.float64,
            )
            global_ego_poses.append(global_ego_pose)

        local_ego_poses = convert_absolute_to_relative_se2_array(
            StateSE2(*global_ego_poses[-1]), np.array(global_ego_poses, dtype=np.float64)
        )

        ego_statuses: List[EgoStatus] = []
        cameras: List[Cameras] = []
        lidars: List[Lidar] = []
        timestamps = []
        ego2globals = []
        for frame_idx in range(num_history_frames):

            ego_dynamic_state = scene_dict_list[frame_idx]["ego_dynamic_state"]
            ego_status = EgoStatus(
                ego_pose=np.array(local_ego_poses[frame_idx], dtype=np.float32),
                ego_velocity=np.array(ego_dynamic_state[:2], dtype=np.float32),
                ego_acceleration=np.array(ego_dynamic_state[2:], dtype=np.float32),
                driving_command=scene_dict_list[frame_idx]["driving_command"],
            )
            ego_statuses.append(ego_status)

            sensor_names = sensor_config.get_sensors_at_iteration(frame_idx)
            cameras.append(
                Cameras.from_camera_dict(
                    sensor_blobs_path=sensor_blobs_path,
                    camera_dict=scene_dict_list[frame_idx]["cams"],
                    sensor_names=sensor_names,
                )
            )

            lidars.append(
                Lidar.from_paths(
                    sensor_blobs_path=sensor_blobs_path,
                    lidar_path=Path(scene_dict_list[frame_idx]["lidar_path"]),
                    sensor_names=sensor_names,
                )
            )
            ego2globals.append(scene_dict_list[frame_idx]['ego2global'])
            timestamps.append(scene_dict_list[frame_idx]['timestamp'])


        return AgentInput(ego_statuses, cameras, lidars, timestamps, ego2globals)


@dataclass
class Annotations:

    boxes: npt.NDArray[np.float32]
    names: List[str]
    velocity_3d: npt.NDArray[np.float32]
    instance_tokens: List[str]
    track_tokens: List[str]

    def __post_init__(self):
        annotation_lengths: Dict[str, int] = {
            attribute_name: len(attribute) for attribute_name, attribute in vars(self).items()
        }
        assert (
            len(set(annotation_lengths.values())) == 1
        ), f"Annotations expects all attributes to have equal length, but got {annotation_lengths}"


@dataclass
class Trajectory:
    poses: npt.NDArray[np.float32]  # local coordinates
    trajectory_sampling: TrajectorySampling = TrajectorySampling(
        time_horizon=4, interval_length=0.5
    )

    def __post_init__(self):
        assert (
            self.poses.ndim == 2
        ), "Trajectory poses should have two dimensions for samples and poses."
        assert (
            self.poses.shape[0] == self.trajectory_sampling.num_poses
        ), "Trajectory poses and sampling have unequal number of poses."
        assert self.poses.shape[1] == 3, "Trajectory requires (x, y, heading) at last dim."


@dataclass
class SceneMetadata:
    log_name: str
    scene_token: str
    map_name: str
    initial_token: str

    num_history_frames: int
    num_future_frames: int


@dataclass
class Frame:

    token: str
    timestamp: int
    roadblock_ids: List[str]
    traffic_lights: List[Tuple[str, bool]]
    annotations: Annotations

    ego_status: EgoStatus
    lidar: Lidar
    cameras: Cameras
    ego2global: np.ndarray


@dataclass
class Scene:

    # Ground truth information
    scene_metadata: SceneMetadata
    map_api: AbstractMap
    frames: List[Frame]

    def get_future_trajectory(self, num_trajectory_frames: Optional[int] = None) -> Trajectory:
        if num_trajectory_frames > 8:
            num_trajectory_frames = 8
        if num_trajectory_frames is None:
            num_trajectory_frames = self.scene_metadata.num_future_frames

        start_frame_idx = self.scene_metadata.num_history_frames - 1

        global_ego_poses = []
        for frame_idx in range(start_frame_idx, start_frame_idx + num_trajectory_frames + 1):
            global_ego_poses.append(self.frames[frame_idx].ego_status.ego_pose)

        local_ego_poses = convert_absolute_to_relative_se2_array(
            StateSE2(*global_ego_poses[0]), np.array(global_ego_poses[1:], dtype=np.float64)
        )

        return Trajectory(
            local_ego_poses,
            TrajectorySampling(
                num_poses=len(local_ego_poses),
                interval_length=NAVSIM_INTERVAL_LENGTH,
            ),
        )

    def get_history_trajectory(self, num_trajectory_frames: Optional[int] = None) -> Trajectory:

        if num_trajectory_frames is None:
            num_trajectory_frames = self.scene_metadata.num_history_frames

        global_ego_poses = []
        for frame_idx in range(num_trajectory_frames):
            global_ego_poses.append(self.frames[frame_idx].ego_status.ego_pose)

        origin = StateSE2(*global_ego_poses[-1])
        local_ego_poses = convert_absolute_to_relative_se2_array(
            origin, np.array(global_ego_poses, dtype=np.float64)
        )

        return Trajectory(
            local_ego_poses,
            TrajectorySampling(
                num_poses=len(local_ego_poses),
                interval_length=NAVSIM_INTERVAL_LENGTH,
            ),
        )

    def get_agent_input(self) -> AgentInput:

        local_ego_poses = self.get_history_trajectory().poses
        ego_statuses: List[EgoStatus] = []
        cameras: List[Cameras] = []
        lidars: List[Lidar] = []
        ego2globals, timestamps = [], []
        for frame_idx in range(self.scene_metadata.num_history_frames):
            frame_ego_status = self.frames[frame_idx].ego_status

            ego_statuses.append(
                EgoStatus(
                    ego_pose=local_ego_poses[frame_idx],
                    ego_velocity=frame_ego_status.ego_velocity,
                    ego_acceleration=frame_ego_status.ego_acceleration,
                    driving_command=frame_ego_status.driving_command,
                )
            )
            cameras.append(self.frames[frame_idx].cameras)
            lidars.append(self.frames[frame_idx].lidar)
            ego2globals.append(self.frames[frame_idx].ego2global)
            timestamps.append(self.frames[frame_idx].timestamp)


        return AgentInput(ego_statuses, cameras, lidars, timestamps, ego2globals)

    @classmethod
    def _build_map_api(cls, map_name: str) -> AbstractMap:
        assert (
            map_name in MAP_LOCATIONS
        ), f"The map name {map_name} is invalid, must be in {MAP_LOCATIONS}"
        return get_maps_api(NUPLAN_MAPS_ROOT, "nuplan-maps-v1.0", map_name)

    @classmethod
    def _build_annotations(

        cls,

        scene_frame: Dict,

    ) -> Annotations:
        return Annotations(
            boxes=scene_frame["anns"]["gt_boxes"],
            names=scene_frame["anns"]["gt_names"],
            velocity_3d=scene_frame["anns"]["gt_velocity_3d"],
            instance_tokens=scene_frame["anns"]["instance_tokens"],
            track_tokens=scene_frame["anns"]["track_tokens"],
        )

    @classmethod
    def _build_ego_status(

        cls,

        scene_frame: Dict,

    ) -> EgoStatus:
        ego_translation = scene_frame["ego2global_translation"]
        ego_quaternion = Quaternion(*scene_frame["ego2global_rotation"])
        global_ego_pose = np.array(
            [ego_translation[0], ego_translation[1], ego_quaternion.yaw_pitch_roll[0]],
            dtype=np.float64,
        )
        ego_dynamic_state = scene_frame["ego_dynamic_state"]
        return EgoStatus(
            ego_pose=global_ego_pose,
            ego_velocity=np.array(ego_dynamic_state[:2], dtype=np.float32),
            ego_acceleration=np.array(ego_dynamic_state[2:], dtype=np.float32),
            driving_command=scene_frame["driving_command"],
            in_global_frame=True,
        )

    @classmethod
    def from_scene_dict_list(

        cls,

        scene_dict_list: List[Dict],

        sensor_blobs_path: Path,

        num_history_frames: int,

        num_future_frames: int,

        sensor_config: SensorConfig,

    ) -> Scene:
        assert len(scene_dict_list) >= 0, "Scene list is empty!"

        scene_metadata = SceneMetadata(
            log_name=scene_dict_list[num_history_frames - 1]["log_name"],
            scene_token=scene_dict_list[num_history_frames - 1]["scene_token"],
            map_name=scene_dict_list[num_history_frames - 1]["map_location"],
            initial_token=scene_dict_list[num_history_frames - 1]["token"],
            num_history_frames=num_history_frames,
            num_future_frames=num_future_frames,
        )
        map_api = cls._build_map_api(scene_metadata.map_name)

        frames: List[Frame] = []
        for frame_idx in range(len(scene_dict_list)):
            global_ego_status = cls._build_ego_status(scene_dict_list[frame_idx])
            annotations = cls._build_annotations(scene_dict_list[frame_idx])

            sensor_names = sensor_config.get_sensors_at_iteration(frame_idx)

            cameras = Cameras.from_camera_dict(
                sensor_blobs_path=sensor_blobs_path,
                camera_dict=scene_dict_list[frame_idx]["cams"],
                sensor_names=sensor_names,
            )

            lidar = Lidar.from_paths(
                sensor_blobs_path=sensor_blobs_path,
                lidar_path=Path(scene_dict_list[frame_idx]["lidar_path"]),
                sensor_names=sensor_names,
            )

            frame = Frame(
                token=scene_dict_list[frame_idx]["token"],
                timestamp=scene_dict_list[frame_idx]["timestamp"],
                roadblock_ids=scene_dict_list[frame_idx]["roadblock_ids"],
                traffic_lights=scene_dict_list[frame_idx]["traffic_lights"],
                annotations=annotations,
                ego_status=global_ego_status,
                lidar=lidar,
                cameras=cameras,
                ego2global=scene_dict_list[frame_idx]['ego2global']
            )
            frames.append(frame)

        return Scene(scene_metadata=scene_metadata, map_api=map_api, frames=frames)


@dataclass
class SceneFilter:

    num_history_frames: int = 4
    num_future_frames: int = 10
    frame_interval: Optional[int] = None
    has_route: bool = True

    max_scenes: Optional[int] = None
    log_names: Optional[List[str]] = None
    tokens: Optional[List[str]] = None
    # TODO: expand filter options

    def __post_init__(self):

        if self.frame_interval is None:
            self.frame_interval = self.num_frames

        assert (
            self.num_history_frames >= 1
        ), "SceneFilter: num_history_frames must greater equal one."
        assert (
            self.num_future_frames >= 0
        ), "SceneFilter: num_future_frames must greater equal zero."
        assert self.frame_interval >= 1, "SceneFilter: frame_interval must greater equal one."

    @property
    def num_frames(self) -> int:
        return self.num_history_frames + self.num_future_frames


@dataclass
class SensorConfig:

    # Config values of sensors are either
    # - bool: Whether to load history or not
    # - List[int]: For loading specific history steps

    cam_f0: Union[bool, List[int]]
    cam_l0: Union[bool, List[int]]
    cam_l1: Union[bool, List[int]]
    cam_l2: Union[bool, List[int]]
    cam_r0: Union[bool, List[int]]
    cam_r1: Union[bool, List[int]]
    cam_r2: Union[bool, List[int]]
    cam_b0: Union[bool, List[int]]
    lidar_pc: Union[bool, List[int]]

    def get_sensors_at_iteration(self, iteration: int) -> List[str]:

        sensors_at_iteration: List[str] = []
        for sensor_name, sensor_include in asdict(self).items():
            if isinstance(sensor_include, bool) and sensor_include:
                sensors_at_iteration.append(sensor_name)
            elif isinstance(sensor_include, list) and iteration in sensor_include:
                sensors_at_iteration.append(sensor_name)

        return sensors_at_iteration

    @classmethod
    def build_all_sensors(cls, include: Union[bool, List[int]] = True) -> SensorConfig:
        return SensorConfig(
            cam_f0=include,
            cam_l0=include,
            cam_l1=include,
            cam_l2=include,
            cam_r0=include,
            cam_r1=include,
            cam_r2=include,
            cam_b0=include,
            lidar_pc=include,
        )

    @classmethod
    def build_cam_sensors(cls) -> SensorConfig:
        return SensorConfig(
            cam_f0=True,
            cam_l0=True,
            cam_l1=True,
            cam_l2=True,
            cam_r0=True,
            cam_r1=True,
            cam_r2=True,
            cam_b0=True,
            lidar_pc=False,
        )

    @classmethod
    def build_mm_sensors(cls) -> SensorConfig:
        return SensorConfig(
            cam_f0=[3],
            cam_l0=[3],
            cam_l1=[3],
            cam_l2=[3],
            cam_r0=[3],
            cam_r1=[3],
            cam_r2=[3],
            cam_b0=[3],
            lidar_pc=[0, 1, 2, 3],
        )

    @classmethod
    def build_no_sensors(cls) -> SensorConfig:
        return cls.build_all_sensors(include=False)


@dataclass
class PDMResults:

    no_at_fault_collisions: float
    drivable_area_compliance: float
    driving_direction_compliance: float

    ego_progress: float
    time_to_collision_within_bound: float
    comfort: float

    score: float