File size: 16,061 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import copy
import torch
import torch.nn as nn
import numpy as np
from torch.nn.init import normal_
from det_map.det.dal.mmdet3d.models.builder import build_fuser
import torch.nn.functional as F
from mmdet.models.utils.builder import TRANSFORMER
from det_map.det.dal.mmdet3d.models.builder import FUSERS
from mmcv.cnn import Linear, bias_init_with_prob, xavier_init, constant_init
from mmcv.runner.base_module import BaseModule, ModuleList, Sequential
from mmcv.cnn.bricks.transformer import build_transformer_layer_sequence, build_positional_encoding
from torchvision.transforms.functional import rotate
from det_map.det.dal.mmdet3d.models.bevformer_modules.temporal_self_attention import TemporalSelfAttention
from det_map.det.dal.mmdet3d.models.bevformer_modules.spatial_cross_attention import MSDeformableAttention3D
from det_map.det.dal.mmdet3d.models.bevformer_modules.decoder import CustomMSDeformableAttention
from typing import List

@FUSERS.register_module()
class ConvFuser(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        self.in_channels = in_channels
        self.out_channels = out_channels
        super().__init__(
            nn.Conv2d(sum(in_channels), out_channels, 3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True),
        )

    def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
        return super().forward(torch.cat(inputs, dim=1))



@TRANSFORMER.register_module()
class MapTRPerceptionTransformer(BaseModule):
    """Implements the Detr3D transformer.

    Args:

        as_two_stage (bool): Generate query from encoder features.

            Default: False.

        num_feature_levels (int): Number of feature maps from FPN:

            Default: 4.

        two_stage_num_proposals (int): Number of proposals when set

            `as_two_stage` as True. Default: 300.

    """

    def __init__(self,

                 bev_h, bev_w,

                 num_feature_levels=1,

                 num_cams=2,

                 z_cfg=dict(

                    pred_z_flag=False,

                    gt_z_flag=False,

                 ),

                 two_stage_num_proposals=300,

                 fuser=None,

                 encoder=None,

                 decoder=None,

                 embed_dims=256,

                 rotate_prev_bev=True,

                 use_shift=True,

                 use_can_bus=True,

                 can_bus_norm=True,

                 use_cams_embeds=True,

                 rotate_center=[100, 100],

                 modality='vision',

                 feat_down_sample_indice=-1,

                 **kwargs):
        super(MapTRPerceptionTransformer, self).__init__(**kwargs)
        if modality == 'fusion':
            self.fuser = build_fuser(fuser)
        # self.use_attn_bev = encoder['type'] == 'BEVFormerEncoder'

        self.use_attn_bev = True
        self.bev_h = bev_h
        self.bev_w = bev_w
        self.bev_embedding = nn.Embedding(self.bev_h * self.bev_w, embed_dims)
        self.positional_encoding = build_positional_encoding(
            dict(
                type='CustomLearnedPositionalEncoding',
                num_feats=embed_dims // 2,
                row_num_embed=self.bev_h,
                col_num_embed=self.bev_w,
            )
        )
        self.encoder = build_transformer_layer_sequence(encoder)
        self.decoder = build_transformer_layer_sequence(decoder)
        self.embed_dims = embed_dims
        self.num_feature_levels = num_feature_levels
        self.num_cams = num_cams
        self.fp16_enabled = False

        self.rotate_prev_bev = rotate_prev_bev
        self.use_shift = use_shift
        self.use_can_bus = use_can_bus
        self.can_bus_norm = can_bus_norm
        self.use_cams_embeds = use_cams_embeds

        self.two_stage_num_proposals = two_stage_num_proposals
        self.z_cfg=z_cfg
        self.init_layers()
        self.rotate_center = rotate_center
        self.feat_down_sample_indice = feat_down_sample_indice

    def init_layers(self):
        """Initialize layers of the Detr3DTransformer."""
        # self.level_embeds = nn.Parameter(torch.Tensor(
        #     self.num_feature_levels, self.embed_dims))
        # self.cams_embeds = nn.Parameter(
        #     torch.Tensor(self.num_cams, self.embed_dims))
        self.reference_points = nn.Linear(self.embed_dims, 2) if not self.z_cfg['gt_z_flag'] \
                            else nn.Linear(self.embed_dims, 3)
        # self.can_bus_mlp = nn.Sequential(
        #     nn.Linear(18, self.embed_dims // 2),
        #     nn.ReLU(inplace=True),
        #     nn.Linear(self.embed_dims // 2, self.embed_dims),
        #     nn.ReLU(inplace=True),
        # )
        # if self.can_bus_norm:
        #     self.can_bus_mlp.add_module('norm', nn.LayerNorm(self.embed_dims))

    def init_weights(self):
        """Initialize the transformer weights."""
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for m in self.modules():
            if isinstance(m, MSDeformableAttention3D) or isinstance(m, TemporalSelfAttention) \
                    or isinstance(m, CustomMSDeformableAttention):
                try:
                    m.init_weight()
                except AttributeError:
                    m.init_weights()
        normal_(self.level_embeds)
        normal_(self.cams_embeds)
        xavier_init(self.reference_points, distribution='uniform', bias=0.)
        # xavier_init(self.can_bus_mlp, distribution='uniform', bias=0.)
    # TODO apply fp16 to this module cause grad_norm NAN
    # @auto_fp16(apply_to=('mlvl_feats', 'bev_queries', 'prev_bev', 'bev_pos'), out_fp32=True)

    def attn_bev_encode(

            self,

            mlvl_feats,

            cam_params=None,

            gt_bboxes_3d=None,

            pred_img_depth=None,

            prev_bev=None,

            bev_mask=None,

            **kwargs):

        bs = mlvl_feats[0].size(0)
        dtype = mlvl_feats[0].dtype

        feat_flatten = []
        spatial_shapes = []
        for lvl, feat in enumerate(mlvl_feats):
            bs, num_cam, c, h, w = feat.shape
            spatial_shape = (h, w)
            feat = feat.flatten(3).permute(1, 0, 3, 2)

            spatial_shapes.append(spatial_shape)
            feat_flatten.append(feat)

        feat_flatten = torch.cat(feat_flatten, 2)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=mlvl_feats[0].device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))

        feat_flatten = feat_flatten.permute(0, 2, 1, 3)  # (num_cam, H*W, bs, embed_dims)

        bev_queries = self.bev_embedding.weight.to(dtype)
        bev_queries = bev_queries.unsqueeze(1).repeat(1, bs, 1)
        bev_pos = self.positional_encoding(bs, self.bev_h, self.bev_w, bev_queries.device).to(dtype)
        bev_pos = bev_pos.flatten(2).permute(2, 0, 1)

        bev_embed = self.encoder(
            bev_queries,
            feat_flatten,
            feat_flatten,
            bev_h=self.bev_h,
            bev_w=self.bev_w,
            bev_pos=bev_pos,
            spatial_shapes=spatial_shapes,
            level_start_index=level_start_index,
            cam_params=cam_params,
            gt_bboxes_3d=gt_bboxes_3d,
            pred_img_depth=pred_img_depth,
            prev_bev=prev_bev,
            bev_mask=bev_mask,
            **kwargs
        )

        return bev_embed

    def lss_bev_encode(

            self,

            mlvl_feats,

            prev_bev=None,

            **kwargs):
        # import ipdb;ipdb.set_trace()
        # assert len(mlvl_feats) == 1, 'Currently we only use last single level feat in LSS'
        # import ipdb;ipdb.set_trace()
        images = mlvl_feats[self.feat_down_sample_indice]
        img_metas = kwargs['img_metas']
        encoder_outputdict = self.encoder(images,img_metas)
        bev_embed = encoder_outputdict['bev']
        depth = encoder_outputdict['depth']
        bs, c, _,_ = bev_embed.shape
        bev_embed = bev_embed.view(bs,c,-1).permute(0,2,1).contiguous()
        ret_dict = dict(
            bev=bev_embed,
            depth=depth
        )
        return ret_dict

    def get_bev_features(

            self,

            mlvl_feats,

            lidar_feat,

            bev_queries,

            bev_h,

            bev_w,

            grid_length=[0.512, 0.512],

            bev_pos=None,

            prev_bev=None,

            **kwargs):
        """

        obtain bev features.

        """
        assert self.use_attn_bev
        if self.use_attn_bev:
            img_metas = kwargs['img_metas']
            rot = img_metas['sensor2lidar_rotation']
            B, T, N, _, _ = rot.shape
            cam_params = (img_metas['sensor2lidar_rotation'][:, -1],
                          img_metas['sensor2lidar_translation'][:, -1],
                          img_metas['intrinsics'][:, -1],
                          img_metas['post_rot'][:, -1],
                          img_metas['post_tran'][:, -1],
                          torch.eye(3, device=rot.device, dtype=rot.dtype)[None].repeat(B, 1, 1)
                          )
            bev_embed = self.attn_bev_encode(
                mlvl_feats,
                cam_params=cam_params,
                **kwargs)
        else:
            ret_dict = self.lss_bev_encode(
                mlvl_feats,
                prev_bev=prev_bev,
                **kwargs)
            bev_embed = ret_dict['bev']
            depth = ret_dict['depth']
        if lidar_feat is not None:
            bs = mlvl_feats[0].size(0)
            bev_embed = bev_embed.view(bs, bev_h, bev_w, -1).permute(0,3,1,2).contiguous()
            lidar_feat = lidar_feat.permute(0,1,3,2).contiguous() # B C H W
            # lidar_feat = nn.functional.interpolate(lidar_feat, size=(bev_h,bev_w), mode='bicubic', align_corners=False)
            fused_bev = self.fuser([bev_embed, lidar_feat])
            fused_bev = fused_bev.flatten(2).permute(0,2,1).contiguous()
            bev_embed = fused_bev
        ret_dict = dict(
            bev=bev_embed,
            depth=None
        )
        return ret_dict

    def format_feats(self, mlvl_feats):
        bs = mlvl_feats[0].size(0)
        feat_flatten = []
        spatial_shapes = []
        for lvl, feat in enumerate(mlvl_feats):
            # import pdb; pdb.set_trace()
            bs, num_cam, c, h, w = feat.shape
            spatial_shape = (h, w)
            feat = feat.flatten(3).permute(1, 0, 3, 2)
            if self.use_cams_embeds:
                feat = feat
            feat = feat
            spatial_shapes.append(spatial_shape)
            feat_flatten.append(feat)

        feat_flatten = torch.cat(feat_flatten, 2)
        spatial_shapes = torch.as_tensor(
            spatial_shapes, dtype=torch.long, device=feat.device)
        level_start_index = torch.cat((spatial_shapes.new_zeros(
            (1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))

        feat_flatten = feat_flatten.permute(
            0, 2, 1, 3)  # (num_cam, H*W, bs, embed_dims)
        return feat_flatten, spatial_shapes, level_start_index
    # TODO apply fp16 to this module cause grad_norm NAN
    # @auto_fp16(apply_to=('mlvl_feats', 'bev_queries', 'object_query_embed', 'prev_bev', 'bev_pos'))
    def forward(self,

                mlvl_feats,

                lidar_feat,

                bev_queries,

                object_query_embed,

                bev_h,

                bev_w,

                grid_length=[0.512, 0.512],

                bev_pos=None,

                reg_branches=None,

                cls_branches=None,

                prev_bev=None,

                **kwargs):
        """Forward function for `Detr3DTransformer`.

        Args:

            mlvl_feats (list(Tensor)): Input queries from

                different level. Each element has shape

                [bs, num_cams, embed_dims, h, w].

            bev_queries (Tensor): (bev_h*bev_w, c)

            bev_pos (Tensor): (bs, embed_dims, bev_h, bev_w)

            object_query_embed (Tensor): The query embedding for decoder,

                with shape [num_query, c].

            reg_branches (obj:`nn.ModuleList`): Regression heads for

                feature maps from each decoder layer. Only would

                be passed when `with_box_refine` is True. Default to None.

        Returns:

            tuple[Tensor]: results of decoder containing the following tensor.

                - bev_embed: BEV features

                - inter_states: Outputs from decoder. If

                    return_intermediate_dec is True output has shape \

                      (num_dec_layers, bs, num_query, embed_dims), else has \

                      shape (1, bs, num_query, embed_dims).

                - init_reference_out: The initial value of reference \

                    points, has shape (bs, num_queries, 4).

                - inter_references_out: The internal value of reference \

                    points in decoder, has shape \

                    (num_dec_layers, bs,num_query, embed_dims)

                - enc_outputs_class: The classification score of \

                    proposals generated from \

                    encoder's feature maps, has shape \

                    (batch, h*w, num_classes). \

                    Only would be returned when `as_two_stage` is True, \

                    otherwise None.

                - enc_outputs_coord_unact: The regression results \

                    generated from encoder's feature maps., has shape \

                    (batch, h*w, 4). Only would \

                    be returned when `as_two_stage` is True, \

                    otherwise None.

        """

        ouput_dic = self.get_bev_features(
            mlvl_feats,
            lidar_feat,
            bev_queries,
            bev_h,
            bev_w,
            grid_length=grid_length,
            bev_pos=bev_pos,
            prev_bev=prev_bev,
            **kwargs)  # bev_embed shape: bs, bev_h*bev_w, embed_dims
        bev_embed = ouput_dic['bev']
        depth = ouput_dic['depth']
        bs = mlvl_feats[0].size(0)
        query_pos, query = torch.split(
            object_query_embed, self.embed_dims, dim=1)
        query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1)
        query = query.unsqueeze(0).expand(bs, -1, -1)
        reference_points = self.reference_points(query_pos)
        reference_points = reference_points.sigmoid()
        init_reference_out = reference_points

        query = query.permute(1, 0, 2)
        query_pos = query_pos.permute(1, 0, 2)
        bev_embed = bev_embed.permute(1, 0, 2)

        feat_flatten, feat_spatial_shapes, feat_level_start_index \
            = self.format_feats(mlvl_feats)

        inter_states, inter_references = self.decoder(
            query=query,
            key=None,
            value=bev_embed,
            query_pos=query_pos,
            reference_points=reference_points,
            reg_branches=reg_branches,
            cls_branches=cls_branches,
            spatial_shapes=torch.tensor([[bev_h, bev_w]], device=query.device),
            level_start_index=torch.tensor([0], device=query.device),
            mlvl_feats=mlvl_feats,
            feat_flatten=None,
            feat_spatial_shapes=feat_spatial_shapes,
            feat_level_start_index=feat_level_start_index,
            **kwargs)

        inter_references_out = inter_references

        return bev_embed, depth, inter_states, init_reference_out, inter_references_out