File size: 6,185 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from typing import Dict, Tuple, List

import pytorch_lightning as pl
import torch
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from torch import Tensor
import torch.nn.functional as F
from navsim.agents.abstract_agent import AbstractAgent
from navsim.agents.vadv2.vadv2_agent import Vadv2Agent
from navsim.common.dataclasses import Trajectory


class AgentLightningModule(pl.LightningModule):
    def __init__(

            self,

            agent: AbstractAgent,

    ):
        super().__init__()
        self.agent = agent

    def _step(

            self,

            batch: Tuple[Dict[str, Tensor], Dict[str, Tensor], List[str]],

            logging_prefix: str,

    ):
        features, targets, tokens = batch
        if logging_prefix in ['train', 'val'] and isinstance(self.agent, Vadv2Agent):
            prediction = self.agent.forward_train(features, targets['interpolated_traj'])
        else:
            prediction = self.agent.forward(features)

        loss, loss_dict = self.agent.compute_loss(features, targets, prediction, tokens)

        for k, v in loss_dict.items():
            self.log(f"{logging_prefix}/{k}", v, on_step=True, on_epoch=True, prog_bar=True, sync_dist=True)
        self.log(f"{logging_prefix}/loss", loss, on_step=True, on_epoch=True, prog_bar=True, sync_dist=True)
        return loss

    def training_step(

            self,

            batch: Tuple[Dict[str, Tensor], Dict[str, Tensor]],

            batch_idx: int

    ):
        return self._step(batch, "train")

    def validation_step(

            self,

            batch: Tuple[Dict[str, Tensor], Dict[str, Tensor]],

            batch_idx: int

    ):
        return self._step(batch, "val")

    def configure_optimizers(self):
        return self.agent.get_optimizers()

    # ablate overall pdm score
    # def predict_step(
    #         self,
    #         batch: Tuple[Dict[str, Tensor], Dict[str, Tensor]],
    #         batch_idx: int
    # ):
    #     features, targets, tokens = batch
    #     self.agent.eval()
    #     with torch.no_grad():
    #         predictions = self.agent.forward(features)
    #         poses = predictions["trajectory"].cpu().numpy()

    #     if poses.shape[1] == 40:
    #         interval_length = 0.1
    #     else:
    #         interval_length = 0.5

    #     return {token: {
    #         'trajectory': Trajectory(pose, TrajectorySampling(time_horizon=4, interval_length=interval_length)),

    #     } for pose, token in zip(poses, tokens)}

    # ablate post-processing
    # def predict_step(
    #         self,
    #         batch: Tuple[Dict[str, Tensor], Dict[str, Tensor]],
    #         batch_idx: int
    # ):
    #     features, _, tokens = batch
    #     self.agent.eval()
    #     K = 100
    #     # N_VOCAB, 40, 3
    #     vocab = self.agent.vadv2_model._trajectory_head.vocab
    #     with torch.no_grad():
    #         predictions = self.agent.forward(features)
    #         # poses = predictions["trajectory"].cpu().numpy()
    #         # B, N_VOCAB
    #         imi_score = predictions["trajectory_distribution"].softmax(-1).log()
    #         # B, K
    #         topk_scores, topk_inds = imi_score.topk(K, -1)
    #         # B, K, 40->20, 3->2
    #         topk_trajs = vocab[topk_inds][:, :, :20, :2]

    #         # B, 30, 5 (x,y,h,l,w)
    #         agents = predictions["agent_states"].cpu().numpy()

    #         # B, 7, H=128, W=256
    #         map = predictions["bev_semantic_map"].softmax(1).log().cpu().numpy()
    #         B, _, H, W = map.shape
    #         post_scores = topk_scores.clone()

    #         # normalize trajs
    #         topk_trajs[..., 0] = topk_trajs[..., 0] / 32
    #         topk_trajs[..., 1] = topk_trajs[..., 1] / 32

    #         # B, H, W
    #         good_locs = map[:, 1:2]
    #         bad_locs = map[:, 2:3]
    #         post_scores += F.grid_sample(good_locs, topk_trajs, mode='nearest').sum((-1,)).squeeze(1)
    #         post_scores -= F.grid_sample(bad_locs, topk_trajs, mode='nearest').sum((-1,)).squeeze(1)

    #         post_ind = post_scores.argmax(-1)
    #         poses = vocab[topk_inds[post_ind]].cpu().numpy()

    #     if poses.shape[1] == 40:
    #         interval_length = 0.1
    #     else:
    #         interval_length = 0.5

    #     return {token: {
    #         'trajectory': Trajectory(pose, TrajectorySampling(time_horizon=4, interval_length=interval_length)),

    #     } for pose, token in zip(poses, tokens)}


    # hydra-pdm
    def predict_step(

            self,

            batch: Tuple[Dict[str, Tensor], Dict[str, Tensor]],

            batch_idx: int

    ):
        features, targets, tokens = batch
        self.agent.eval()
        with torch.no_grad():
            predictions = self.agent.forward(features)
            poses = predictions["trajectory"].cpu().numpy()

            imis = predictions["imi"].softmax(-1).log().cpu().numpy()
            nocs = predictions["noc"].log().cpu().numpy()
            das = predictions["da"].log().cpu().numpy()
            ttcs = predictions["ttc"].log().cpu().numpy()
            comforts = predictions["comfort"].log().cpu().numpy()
            if 'progress' in predictions:
                progresses = predictions["progress"].log().cpu().numpy()
            else:
                progresses = [None for _ in range(len(tokens))]
        if poses.shape[1] == 40:
            interval_length = 0.1
        else:
            interval_length = 0.5

        return {token: {
            'trajectory': Trajectory(pose, TrajectorySampling(time_horizon=4, interval_length=interval_length)),
            'imi': imi,
            'noc': noc,
            'da': da,
            'ttc': ttc,
            'comfort': comfort,
            'progress': progress
        } for pose, imi, noc, da, ttc, comfort, progress, token in zip(poses, imis, nocs, das, ttcs, comforts, progresses,
                                                                          tokens)}