File size: 9,676 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import time
from typing import List

import numpy as np
import numpy.typing as npt
import yaml
from nuplan.common.actor_state.ego_state import EgoState
from nuplan.common.actor_state.state_representation import StateSE2, TimePoint
from nuplan.common.geometry.convert import relative_to_absolute_poses
from nuplan.planning.simulation.planner.ml_planner.transform_utils import (
    _get_fixed_timesteps,
    _se2_vel_acc_to_ego_state,
)
from nuplan.planning.simulation.trajectory.interpolated_trajectory import InterpolatedTrajectory
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling

from navsim.common.dataclasses import PDMResults, Trajectory
from navsim.planning.metric_caching.metric_cache import MetricCache
from navsim.planning.simulation.planner.pdm_planner.scoring.pdm_scorer import (
    PDMScorer,
)
from navsim.planning.simulation.planner.pdm_planner.scoring.pdm_scorer_progress import PDMScorerProgress
from navsim.planning.simulation.planner.pdm_planner.simulation.pdm_simulator import (
    PDMSimulator,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_array_representation import (
    ego_states_to_state_array,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import (
    MultiMetricIndex,
    WeightedMetricIndex,
)


def transform_trajectory(

        pred_trajectory: Trajectory, initial_ego_state: EgoState

) -> InterpolatedTrajectory:
    """

    Transform trajectory in global frame and return as InterpolatedTrajectory

    :param pred_trajectory: trajectory dataclass in ego frame

    :param initial_ego_state: nuPlan's ego state object

    :return: nuPlan's InterpolatedTrajectory

    """

    future_sampling = pred_trajectory.trajectory_sampling
    timesteps = _get_fixed_timesteps(
        initial_ego_state, future_sampling.time_horizon, future_sampling.interval_length
    )

    relative_poses = np.array(pred_trajectory.poses, dtype=np.float64)
    relative_states = [StateSE2.deserialize(pose) for pose in relative_poses]
    absolute_states = relative_to_absolute_poses(initial_ego_state.rear_axle, relative_states)

    # NOTE: velocity and acceleration ignored by LQR + bicycle model
    agent_states = [
        _se2_vel_acc_to_ego_state(
            state,
            [0.0, 0.0],
            [0.0, 0.0],
            timestep,
            initial_ego_state.car_footprint.vehicle_parameters,
        )
        for state, timestep in zip(absolute_states, timesteps)
    ]

    # NOTE: maybe make addition of initial_ego_state optional
    return InterpolatedTrajectory([initial_ego_state] + agent_states)


def get_trajectory_as_array(

        trajectory: InterpolatedTrajectory,

        future_sampling: TrajectorySampling,

        start_time: TimePoint,

) -> npt.NDArray[np.float64]:
    """

    Interpolated trajectory and return as numpy array

    :param trajectory: nuPlan's InterpolatedTrajectory object

    :param future_sampling: Sampling parameters for interpolation

    :param start_time: TimePoint object of start

    :return: Array of interpolated trajectory states.

    """

    times_s = np.arange(
        0.0,
        future_sampling.time_horizon + future_sampling.interval_length,
        future_sampling.interval_length,
    )
    times_s += start_time.time_s
    times_us = [int(time_s * 1e6) for time_s in times_s]
    times_us = np.clip(times_us, trajectory.start_time.time_us, trajectory.end_time.time_us)
    time_points = [TimePoint(time_us) for time_us in times_us]

    trajectory_ego_states: List[EgoState] = trajectory.get_state_at_times(time_points)

    return ego_states_to_state_array(trajectory_ego_states)


def pdm_score(

        metric_cache: MetricCache,

        model_trajectory: Trajectory,

        future_sampling: TrajectorySampling,

        simulator: PDMSimulator,

        scorer: PDMScorer,

        use_pdm_closed: bool = False

) -> PDMResults:
    """

    Runs PDM-Score and saves results in dataclass.

    :param metric_cache: Metric cache dataclass

    :param model_trajectory: Predicted trajectory in ego frame.

    :return: Dataclass of PDM-Subscores.

    """

    initial_ego_state = metric_cache.ego_state

    pdm_trajectory = metric_cache.trajectory
    pred_trajectory = transform_trajectory(model_trajectory, initial_ego_state)

    pdm_states, pred_states = (
        get_trajectory_as_array(pdm_trajectory, future_sampling, initial_ego_state.time_point),
        get_trajectory_as_array(pred_trajectory, future_sampling, initial_ego_state.time_point),
    )

    trajectory_states = np.concatenate([pdm_states[None, ...], pred_states[None, ...]], axis=0)

    simulated_states = simulator.simulate_proposals(trajectory_states, initial_ego_state)

    scores = scorer.score_proposals(
        simulated_states,
        metric_cache.observation,
        metric_cache.centerline,
        metric_cache.route_lane_ids,
        metric_cache.drivable_area_map,
    )

    # TODO: Refactor & add / modify existing metrics.
    pred_idx = 0 if use_pdm_closed else 1

    no_at_fault_collisions = scorer._multi_metrics[MultiMetricIndex.NO_COLLISION, pred_idx]
    drivable_area_compliance = scorer._multi_metrics[MultiMetricIndex.DRIVABLE_AREA, pred_idx]
    driving_direction_compliance = scorer._multi_metrics[
        MultiMetricIndex.DRIVING_DIRECTION, pred_idx
    ]

    ego_progress = scorer._weighted_metrics[WeightedMetricIndex.PROGRESS, pred_idx]
    time_to_collision_within_bound = scorer._weighted_metrics[WeightedMetricIndex.TTC, pred_idx]
    comfort = scorer._weighted_metrics[WeightedMetricIndex.COMFORTABLE, pred_idx]

    score = scores[pred_idx]

    return PDMResults(
        no_at_fault_collisions,
        drivable_area_compliance,
        driving_direction_compliance,
        ego_progress,
        time_to_collision_within_bound,
        comfort,
        score,
    )

def pdm_score_vocab(

        metric_cache: MetricCache,

        vocab_trajectory: npt.NDArray,

        future_sampling: TrajectorySampling,

        simulator: PDMSimulator,

        scorer: PDMScorer,

) -> npt.NDArray:
    """

    Runs PDM-Score and saves results in dataclass.

    :param metric_cache: Metric cache dataclass

    :param vocab_trajectory: Predicted trajectory in ego frame.

    :return: Dataclass of PDM-Subscores.

    """

    initial_ego_state = metric_cache.ego_state
    # a = time.time()
    transformed_ones = [transform_trajectory(Trajectory(pose, TrajectorySampling(
            time_horizon=4, interval_length=0.1
        )), initial_ego_state) for pose in vocab_trajectory]
    # b = time.time()
    vocab_states = [
        get_trajectory_as_array(
            transformed,
            future_sampling,
            initial_ego_state.time_point
        )[None] for transformed in transformed_ones
    ]
    # c = time.time()
    trajectory_states = np.concatenate(vocab_states, axis=0)

    simulated_states = simulator.simulate_proposals(trajectory_states, initial_ego_state)
    # d = time.time()
    scores = scorer.score_proposals(
        simulated_states,
        metric_cache.observation,
        metric_cache.centerline,
        metric_cache.route_lane_ids,
        metric_cache.drivable_area_map,
    )
    # e = time.time()
    # print(f'transform: {b-a}, get_trajectory_as_array: {c-b}, simulate: {d-c}, score: {e-d}')
    return scores

def pdm_score_full(

        metric_cache: MetricCache,

        vocab_trajectory: npt.NDArray,

        future_sampling: TrajectorySampling,

        simulator: PDMSimulator,

        scorer: PDMScorerProgress,

) -> npt.NDArray:
    """

    Runs PDM-Score and saves results in dataclass.

    :param metric_cache: Metric cache dataclass

    :param vocab_trajectory: Predicted trajectory in ego frame.

    :return: Dataclass of PDM-Subscores.

    """

    initial_ego_state = metric_cache.ego_state
    transformed_ones = [transform_trajectory(Trajectory(pose, TrajectorySampling(
            time_horizon=4, interval_length=0.1
        )), initial_ego_state) for pose in vocab_trajectory]

    pdm_states = get_trajectory_as_array(
        metric_cache.trajectory,
        future_sampling,
        initial_ego_state.time_point
    )[None]

    # pdm, vocab-0, vocab-1, ..., vocab-n
    all_states = [pdm_states]
    all_states += [
        get_trajectory_as_array(
            transformed,
            future_sampling,
            initial_ego_state.time_point
        )[None] for transformed in transformed_ones
    ]
    all_states = np.concatenate(all_states, axis=0)

    simulated_states = simulator.simulate_proposals(all_states, initial_ego_state)
    scores = scorer.score_proposals(
        simulated_states,
        metric_cache.observation,
        metric_cache.centerline,
        metric_cache.route_lane_ids,
        metric_cache.drivable_area_map,
    )

    return {
        'noc': scorer._multi_metrics[MultiMetricIndex.NO_COLLISION].astype(np.float16)[1:],
        'da': scorer._multi_metrics[MultiMetricIndex.DRIVABLE_AREA].astype(np.bool)[1:],
        'dd': scorer._multi_metrics[MultiMetricIndex.DRIVING_DIRECTION].astype(np.float16)[1:],
        'ttc': scorer._weighted_metrics[WeightedMetricIndex.TTC].astype(np.bool)[1:],
        'progress': scorer._weighted_metrics[WeightedMetricIndex.PROGRESS].astype(np.float16)[1:],
        'comfort': scorer._weighted_metrics[WeightedMetricIndex.COMFORTABLE].astype(np.bool)[1:],
        'total': scores.astype(np.float16)[1:]
    }