File size: 19,938 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
from navsim.agents.hydra.hydra_backbone_pe import HydraBackbonePE
from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.transfuser.transfuser_model import AgentHead
from navsim.agents.utils.attn import MemoryEffTransformer
from navsim.agents.utils.nerf import nerf_positional_encoding
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from mmcv.cnn.bricks.transformer import FFN, build_positional_encoding
from navsim.agents.utils.positional_encoding import SinePositionalEncoding3D
from mmcv.cnn import Conv2d
class HydraModelTemporalPE(nn.Module):
def __init__(self, config: HydraConfig):
super().__init__()
self._query_splits = [
config.num_bounding_boxes,
]
self._config = config
assert config.backbone_type in ['vit', 'intern', 'vov', 'resnet', 'eva', 'moe', 'moe_ult32', 'swin']
if config.backbone_type == 'vit' or config.backbone_type == 'eva':
raise ValueError(f'{config.backbone_type} not supported')
elif config.backbone_type == 'intern' or config.backbone_type == 'vov' or config.backbone_type == 'swin' \
or config.backbone_type == 'resnet':
self._backbone = HydraBackbonePE(config)
self._keyval_embedding = nn.Embedding(
config.img_vert_anchors * config.img_horz_anchors, config.tf_d_model
) # 8x8 feature grid + trajectory
self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)
# usually, the BEV features are variable in size.
self.downscale_layer = nn.Conv2d(self._backbone.img_feat_c, config.tf_d_model, kernel_size=1)
self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model)
self.depth_num = 64
self.depth_start = 1
self.position_range = [-32.0, -32.0, -10.0, 32.0, 32.0, 10.0]
self.position_dim = 3 * self.depth_num
self.embed_dims = 256
self.sin_positional_encoding = dict(
type='SinePositionalEncoding3D', num_feats=128, normalize=True)
self.positional_encoding = build_positional_encoding(
self.sin_positional_encoding)
self.adapt_pos3d = nn.Sequential(
nn.Conv2d(self.embed_dims*3//2, self.embed_dims*4, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(self.embed_dims*4, self.embed_dims, kernel_size=1, stride=1, padding=0),
)
self.position_encoder = nn.Sequential(
nn.Conv2d(self.position_dim, self.embed_dims * 4, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
nn.Conv2d(self.embed_dims * 4, self.embed_dims, kernel_size=1, stride=1, padding=0),
)
tf_decoder_layer = nn.TransformerDecoderLayer(
d_model=config.tf_d_model,
nhead=config.tf_num_head,
dim_feedforward=config.tf_d_ffn,
dropout=config.tf_dropout,
batch_first=True,
)
self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
self._agent_head = AgentHead(
num_agents=config.num_bounding_boxes,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
)
self._trajectory_head = HydraTrajHead(
num_poses=config.trajectory_sampling.num_poses,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
nhead=config.vadv2_head_nhead,
nlayers=config.vadv2_head_nlayers,
vocab_path=config.vocab_path,
config=config
)
#todo
self.seq_len = 256
self.self_attention = MemoryEffTransformer(
d_model=config.tf_d_model,
nhead=8,
dim_feedforward=config.tf_d_model * 4,
dropout=0.0
)
self.cross_attention = MemoryEffTransformer(
d_model=config.tf_d_model,
nhead=8,
dim_feedforward=config.tf_d_model * 4,
dropout=0.0
)
self.tempoal_embedding = nn.Embedding(self.seq_len, self.embed_dims)
def inverse_sigmoid(self, x, eps=1e-6):
"""Inverse sigmoid function.
Args:
x (Tensor): The input tensor.
eps (float): A small value to avoid numerical issues.
Returns:
Tensor: The logit value of the input.
"""
x = x.clamp(min=eps, max=1 - eps) # Ensure the input is within the valid range
return torch.log(x / (1 - x))
def position_embedding(self, features, img_features):
eps = 1e-5
img_features = img_features.unsqueeze(1)
B, N, C, tar_H, tar_W = img_features.shape
device = img_features.device
crop_top = 28
crop_left = 416
H = [self._config.img_vert_anchors for _ in range(3)]
W = [
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920),
self._config.img_horz_anchors * 1920 // (1088 * 2 + 1920),
self._config.img_horz_anchors * 1088 // (1088 * 2 + 1920)
]
# 左视图(16,17)
coords_h_l = torch.arange(H[0], device=device).float() * 1080 / H[0] + crop_top / H[0]
coords_w_l = torch.arange(W[0], device=device).float() * 1920 / W[0] + crop_left / W[0]
# 前视图(16,30)
coords_h_f = torch.arange(H[1], device=device).float() * 1080 / H[1] + crop_top / H[1]
coords_w_f = torch.arange(W[1], device=device).float() * 1920 / W[1]
# 右视图(16,17)
coords_h_r = torch.arange(H[2], device=device).float() * 1080 / H[2] + crop_top / H[2]
coords_w_r = torch.arange(W[2], device=device).float() * 1920 / W[2] + crop_left / W[2]
index = torch.arange(start=0, end=self.depth_num, step=1, device=img_features.device).float()
index_1 = index + 1
bin_size = (self.position_range[3] - self.depth_start) / (self.depth_num * (1 + self.depth_num))
coords_d = self.depth_start + bin_size * index * index_1
D = coords_d.shape[0]
coords = [1] * 3 # 0,1,2 -> front, left, right
coords[0] = torch.stack(torch.meshgrid([coords_w_l, coords_h_l, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
coords[1] = torch.stack(torch.meshgrid([coords_w_f, coords_h_f, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
coords[2] = torch.stack(torch.meshgrid([coords_w_r, coords_h_r, coords_d])).permute(1, 2, 3, 0) # W, H, D, 3
# coords = torch.cat((coords, torch.ones_like(coords[..., :1])), -1)
coords[0][..., :2] = coords[0][..., :2] * torch.max(coords[0][..., 2:3],
torch.ones_like(coords[0][..., 2:3]) * eps)
coords[1][..., :2] = coords[1][..., :2] * torch.max(coords[1][..., 2:3],
torch.ones_like(coords[1][..., 2:3]) * eps)
coords[2][..., :2] = coords[2][..., :2] * torch.max(coords[2][..., 2:3],
torch.ones_like(coords[2][..., 2:3]) * eps)
# img_meta
# img2lidars = ?
pos_3d_embed = None
for i in range(3):
sensor2lidar_rotation = features["sensor2lidar_rotation"][i]
sensor2lidar_translation = features["sensor2lidar_translation"][i]
intrinsics = features["intrinsics"][i]
combine = torch.matmul(sensor2lidar_rotation, torch.inverse(intrinsics)).float() # (B, 1, 3, 3) ?
# print(combine.shape)
# coords_front,coords_fleft,coords_fright (W, H, D, 3)
# coords3d = torch.stack((coords_front, coords_fleft, coords_fright), dim=0) # (N, W, H, D, 3) -> (B, N, W, H, D, 3, 1)
# coords = coords.view(1, H, W, D, 1, 3).repeat(B, 1, 1, 1, 1, 1)
coords3d = coords[i].view(1, N, W[i], H[i], D, 3, 1).repeat(B, 1, 1, 1, 1, 1,
1) # (B, N, W, H, D, 3, 1) -> (B, N, W, H, D, 3, 3)
combine = combine.view(B, N, 1, 1, 1, 3, 3).repeat(1, 1, W[i], H[i], D, 1, 1)
coords3d = torch.matmul(combine, coords3d).squeeze(-1) # (B, N, W, H, D, 3)
sensor2lidar_translation = sensor2lidar_translation.view(B, N, 1, 1, 1, 3)
coords3d += sensor2lidar_translation
coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / (
self.position_range[3] - self.position_range[0])
coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / (
self.position_range[4] - self.position_range[1])
coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / (
self.position_range[5] - self.position_range[2])
# coords_mask = (coords3d > 1.0) | (coords3d < 0.0)
# coords_mask = coords_mask.flatten(-2).sum(-1) > (D * 0.5)
# coords_mask = coords_mask.permute(0, 1, 3, 2)
# for j in range(1000000):
# print(coords3d.shape)
# (2, 1, 17, 16, 64, 3) -> (B, N, W, H, D, 3)
# (2, 1, 30, 16, 64, 3)
# -> (2, 1, 17+30+17, 16, 64, 3)
# coords3d = coords3d.permute(0, 1, 4, 5, 3, 2).contiguous().view(B * N, -1, H[i], W[i])
if pos_3d_embed is None:
pos_3d_embed = coords3d
else:
pos_3d_embed = torch.cat((pos_3d_embed, coords3d), dim=2)
# for i in range(100000):
# print(img_features.shape)
pos_3d_embed = pos_3d_embed.permute(0, 1, 4, 5, 3, 2).contiguous().view(B * N, -1, tar_H, tar_W)
coords3d = self.inverse_sigmoid(pos_3d_embed)
coords_position_embeding = self.position_encoder(coords3d)
return coords_position_embeding.view(B, N, self.embed_dims, tar_H, tar_W)
def obtain_history_query(self, features: Dict[str, torch.Tensor]):
"""Obtain history BEV features iteratively. To save GPU memory, gradients are not calculated.
"""
self.eval()
imgs_queue: List[Cameras] = features["camera_feature"]
with torch.no_grad():
prev_query = None
# bs, len_queue, num_cams, C, H, W = imgs_queue.shape
# imgs_queue = imgs_queue.reshape(bs*len_queue, num_cams, C, H, W)
# img_feats_list = self.extract_feat(img=imgs_queue, len_queue=len_queue)
len_queue = len(imgs_queue)
for i in range(len_queue - 1):
img_features = self._backbone(imgs_queue[i])
img_features = self.downscale_layer(img_features)
input_img_h, input_img_w = img_features.size(-2), img_features.size(-1)
masks = img_features.new_ones(
(img_features.shape[0], 1, input_img_h, input_img_w))
coords_position_embeding = self.position_embedding(features, img_features)
sin_embed = self.positional_encoding(masks)
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(img_features.size())
pos_embed = coords_position_embeding.squeeze(1) + sin_embed
# img_features = img_features.copy()
img_features = img_features + pos_embed # (B, N, self.embed_dims, H, W)
img_features = img_features.flatten(-2, -1)
img_features = img_features.permute(0, 2, 1) # (B, H*W, self.embed_dims)
# if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
# status_encoding = self._status_encoding(status_feature[:, :8])
# else:
# status_encoding = self._status_encoding(status_feature)
keyval = img_features
keyval += self._keyval_embedding.weight[None, ...] # (B, self.embed_dims, H*W)
bs = img_features.shape[0]
# assert(embed_dim == self._config.tf_d_model)
if prev_query == None:
prev_query = self.tempoal_embedding.weight.to(keyval.dtype)
prev_query = prev_query.unsqueeze(0).repeat(bs, 1, 1)
# value = [prev_query, prev_query]
value = torch.stack(
[prev_query, prev_query], 1).reshape(bs * 2, self.seq_len, -1)
prev_query = self.self_attention(value, need_mean=True)
prev_query = self.cross_attention((prev_query, keyval, keyval))
else:
query = self.tempoal_embedding.weight.to(keyval.dtype)
query = query.unsqueeze(0).repeat(bs, 1, 1)
value = torch.stack(
[prev_query, query], 1).reshape(bs * 2, self.seq_len, -1)
prev_query = self.self_attention(value, need_mean=True)
prev_query = self.cross_attention((prev_query, keyval, keyval))
self.train()
return prev_query
def forward(self, features: Dict[str, torch.Tensor],
interpolated_traj=None) -> Dict[str, torch.Tensor]:
# Todo egostatus
camera_feature: torch.Tensor = features["camera_feature"][-1]
# lidar_feature: torch.Tensor = features["lidar_feature"]
status_feature: torch.Tensor = features["status_feature"]
batch_size = status_feature.shape[0]
assert (camera_feature.shape[0] == batch_size)
img_features = self._backbone(camera_feature)
img_features = self.downscale_layer(img_features)
input_img_h, input_img_w = img_features.size(-2), img_features.size(-1)
masks = img_features.new_ones(
(img_features.shape[0], 1, input_img_h, input_img_w))
coords_position_embeding = self.position_embedding(features, img_features)
sin_embed = self.positional_encoding(masks)
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(img_features.size())
pos_embed = coords_position_embeding.squeeze(1) + sin_embed
# img_features = img_features.copy()
img_features = img_features + pos_embed # (B, self.embed_dims, H, W)
img_features = img_features.flatten(-2, -1) # (B, self.embed_dims, H*W)
img_features = img_features.permute(0, 2, 1) # (B, H*W, self.embed_dims)
if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
status_encoding = self._status_encoding(status_feature[:, :8])
else:
status_encoding = self._status_encoding(status_feature)
keyval = img_features
keyval += self._keyval_embedding.weight[None, ...]
# initialize weight
bs = img_features.shape[0]
pre_query = self.obtain_history_query(features)
assert(pre_query is not None)
temporal_query = self.tempoal_embedding.weight.to(img_features.dtype)
temporal_query = temporal_query.unsqueeze(0).repeat(bs, 1, 1)
# value = [pre_query, temporal_query]
value = torch.stack(
[pre_query, temporal_query], 1).reshape(bs * 2, self.seq_len, -1)
temporal_query = self.self_attention(value, need_mean=True)
temporal_query = self.cross_attention((temporal_query, keyval, keyval))
output: Dict[str, torch.Tensor] = {}
trajectory = self._trajectory_head(temporal_query, status_encoding, interpolated_traj)
output.update(trajectory)
return output
class HydraTrajHead(nn.Module):
def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str,
nhead: int, nlayers: int, config: Vadv2Config = None
):
super().__init__()
self._num_poses = num_poses
self.transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model, nhead, d_ffn,
dropout=0.0, batch_first=True
), nlayers
)
self.vocab = nn.Parameter(
torch.from_numpy(np.load(vocab_path)),
requires_grad=False
)
self.heads = nn.ModuleDict({
'noc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'da':
nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'ttc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'comfort': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'progress': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'imi': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
)
})
self.inference_imi_weight = config.inference_imi_weight
self.inference_da_weight = config.inference_da_weight
self.normalize_vocab_pos = config.normalize_vocab_pos
if self.normalize_vocab_pos:
self.encoder = MemoryEffTransformer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.0
)
self.use_nerf = config.use_nerf
if self.use_nerf:
self.pos_embed = nn.Sequential(
nn.Linear(1040, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
else:
self.pos_embed = nn.Sequential(
nn.Linear(num_poses * 3, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
def forward(self, bev_feature, status_encoding, interpolated_traj) -> Dict[str, torch.Tensor]:
# todo sinusoidal embedding
# vocab: 4096, 40, 3
# bev_feature: B, 32, C
# embedded_vocab: B, 4096, C
vocab = self.vocab.data
L, HORIZON, _ = vocab.shape
B = bev_feature.shape[0]
if self.use_nerf:
vocab = torch.cat(
[
nerf_positional_encoding(vocab[..., :2]),
torch.cos(vocab[..., -1])[..., None],
torch.sin(vocab[..., -1])[..., None],
], dim=-1
)
if self.normalize_vocab_pos:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None]
embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1)
else:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1)
tr_out = self.transformer(embedded_vocab, bev_feature)
dist_status = tr_out + status_encoding.unsqueeze(1)
result = {}
# selected_indices: B,
for k, head in self.heads.items():
if k == 'imi':
result[k] = head(dist_status).squeeze(-1)
else:
result[k] = head(dist_status).squeeze(-1).sigmoid()
# how
scores = (
0.05 * result['imi'].softmax(-1).log() +
0.5 * result['noc'].log() +
0.5 * result['da'].log() +
8.0 * (5 * result['ttc'] + 2 * result['comfort'] + 5 * result['progress']).log()
)
selected_indices = scores.argmax(1)
result["trajectory"] = self.vocab.data[selected_indices]
result["trajectory_vocab"] = self.vocab.data
result["selected_indices"] = selected_indices
return result
|