File size: 15,455 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
from typing import Dict
import numpy as np
import torch
import torch.nn as nn
from navsim.agents.hydra.hydra_backbone_pe import HydraBackbonePE
from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.transfuser.transfuser_model import AgentHead
from navsim.agents.utils.attn import MemoryEffTransformer
from navsim.agents.utils.nerf import nerf_positional_encoding
from navsim.agents.vadv2.vadv2_config import Vadv2Config
class HydraModelOffset(nn.Module):
def __init__(self, config: HydraConfig):
super().__init__()
self._query_splits = [
config.num_bounding_boxes,
]
self._config = config
assert config.backbone_type in ['vit', 'intern', 'vov', 'resnet', 'eva', 'moe', 'moe_ult32', 'swin']
if config.backbone_type == 'eva':
raise ValueError(f'{config.backbone_type} not supported')
elif config.backbone_type == 'intern' or config.backbone_type == 'vov' or \
config.backbone_type == 'swin' or config.backbone_type == 'vit':
self._backbone = HydraBackbonePE(config)
img_num = 2 if config.use_back_view else 1
self._keyval_embedding = nn.Embedding(
config.img_vert_anchors * config.img_horz_anchors * img_num, config.tf_d_model
) # 8x8 feature grid + trajectory
self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)
# usually, the BEV features are variable in size.
self.downscale_layer = nn.Conv2d(self._backbone.img_feat_c, config.tf_d_model, kernel_size=1)
self._status_encoding = nn.Linear((4 + 2 + 2) * config.num_ego_status, config.tf_d_model)
tf_decoder_layer = nn.TransformerDecoderLayer(
d_model=config.tf_d_model,
nhead=config.tf_num_head,
dim_feedforward=config.tf_d_ffn,
dropout=config.tf_dropout,
batch_first=True,
)
self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
self._agent_head = AgentHead(
num_agents=config.num_bounding_boxes,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
)
self._trajectory_head = HydraTrajHead(
num_poses=config.trajectory_sampling.num_poses,
d_ffn=config.tf_d_ffn,
d_model=config.tf_d_model,
nhead=config.vadv2_head_nhead,
nlayers=config.vadv2_head_nlayers,
vocab_path=config.vocab_path,
config=config
)
self.vocab = nn.Parameter(
torch.from_numpy(np.load(config.vocab_path)),
requires_grad=False
)
self.planner_head = nn.Sequential(
nn.Linear(config.tf_d_model, config.tf_d_ffn),
# nn.Dropout(0.1),
nn.ReLU(),
nn.Linear(config.tf_d_ffn, config.tf_d_ffn),
nn.ReLU(),
nn.Linear(config.tf_d_ffn, config.trajectory_sampling.num_poses * 3),
)
self._pos_embed = nn.Sequential(
nn.Linear(config.trajectory_sampling.num_poses * 3, config.tf_d_ffn),
nn.ReLU(),
nn.Linear(config.tf_d_ffn, config.tf_d_model),
)
self._encoder = MemoryEffTransformer(
d_model=config.tf_d_model,
nhead=config.vadv2_head_nhead,
dim_feedforward=config.tf_d_model * 4,
dropout=0.0
)
self._transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
config.tf_d_model, config.vadv2_head_nhead, config.tf_d_ffn,
dropout=0.0, batch_first=True
), config.vadv2_head_nlayers
)
def img_feat_blc(self, camera_feature):
img_features = self._backbone(camera_feature)
img_features = self.downscale_layer(img_features).flatten(-2, -1)
img_features = img_features.permute(0, 2, 1)
return img_features
def forward(self, features: Dict[str, torch.Tensor],
interpolated_traj=None) -> Dict[str, torch.Tensor]:
camera_feature: torch.Tensor = features["camera_feature"]
status_feature: torch.Tensor = features["status_feature"]
if isinstance(camera_feature, list):
camera_feature = camera_feature[-1]
# status_feature[:, 0] = 0.0
# status_feature[:, 1] = 1.0
# status_feature[:, 2] = 0.0
# status_feature[:, 3] = 0.0
batch_size = status_feature.shape[0]
img_features = self.img_feat_blc(camera_feature)
if self._config.use_back_view:
img_features_back = self.img_feat_blc(features["camera_feature_back"])
img_features = torch.cat([img_features, img_features_back], 1)
if self._config.num_ego_status == 1 and status_feature.shape[1] == 32:
status_encoding = self._status_encoding(status_feature[:, :8])
else:
status_encoding = self._status_encoding(status_feature)
# (4096,40,3)->(4096,120)->(B,4096,120)
# 先吧image feature pooling然后和ego 以及trajectory concat最后送入mlp预测offset(X)
# kernel_size = img_features.shape[1]
# stride = img_features.shape[1]
# img_features = F.max_pool1d(img_features.permute(0, 2, 1), kernel_size=kernel_size, stride=stride).\
# permute(0, 2, 1).squeeze(1)
# planner_features = torch.cat(
# [status_encoding, img_features, trajectory_encodings], dim=-1
# )
#
keyval = img_features
keyval += self._keyval_embedding.weight[None, ...]
# vocab = self.vocab.data #(4096, 40, 3)
# L, num_pose, _ = vocab.shape
# B = img_features.shape[0]
# # trajectory_encodings = self.pos_embed(trajectory.view(trajectory.shape[0], -1))[None].repeat(B, 1, 1)
# embedded_vocab = self._pos_embed(vocab.view(L, -1))[None]
# embedded_vocab = self._encoder(embedded_vocab).repeat(B, 1, 1)
# tr_out = self._transformer(embedded_vocab, keyval)
# dist_status = tr_out + status_encoding.unsqueeze(1)
# traj_offset = self.planner_head(dist_status) #(B, 4096, 120)
# for i in range(1000000):
# print(traj_offset.shape)
# vocab_offset = vocab[None].repeat(B, 1, 1, 1) + traj_offset.view(B, L, num_pose, -1)
query = self._query_embedding.weight[None, ...].repeat(batch_size, 1, 1)
agents_query = self._tf_decoder(query, keyval)
output: Dict[str, torch.Tensor] = {}
trajectory = self._trajectory_head(keyval, status_encoding, interpolated_traj)
output.update(trajectory)
agents = self._agent_head(agents_query)
output.update(agents)
return output
class HydraTrajHead(nn.Module):
def __init__(self, num_poses: int, d_ffn: int, d_model: int, vocab_path: str,
nhead: int, nlayers: int, config: Vadv2Config = None
):
super().__init__()
self._num_poses = num_poses
self.transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model, nhead, d_ffn,
dropout=0.0, batch_first=True
), nlayers
)
self.regression_transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model, nhead, d_ffn,
dropout=0.0, batch_first=True
), nlayers
)
self.imi_transformer = nn.TransformerDecoder(
nn.TransformerDecoderLayer(
d_model, nhead, d_ffn,
dropout=0.0, batch_first=True
), nlayers
)
# todo tuning
self.offset_xy_bound = 1
self.offset_heading_bound = 0.01
self.offset_xy = nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, num_poses * 2 // 2),
nn.Tanh()
)
self.offset_heading = nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, num_poses * 1 // 2),
nn.Tanh()
)
self.imi_regression_head = nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
)
self.vocab = nn.Parameter(
torch.from_numpy(np.load(vocab_path)),
requires_grad=False
)
self.heads = nn.ModuleDict({
'noc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'da':
nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'ttc': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'comfort': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'progress': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
),
'imi': nn.Sequential(
nn.Linear(d_model, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, 1),
)
})
self.inference_imi_weight = config.inference_imi_weight
self.inference_da_weight = config.inference_da_weight
self.normalize_vocab_pos = config.normalize_vocab_pos
if self.normalize_vocab_pos:
self.encoder = MemoryEffTransformer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.0
)
self.use_nerf = config.use_nerf
if self.use_nerf:
self.pos_embed = nn.Sequential(
nn.Linear(1040, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
else:
self.pos_embed = nn.Sequential(
nn.Linear(num_poses * 3, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
self.mlp_pos_embed = nn.Sequential(
nn.Linear(num_poses * 3, d_ffn),
nn.ReLU(),
nn.Linear(d_ffn, d_model),
)
self.encoder_offset = MemoryEffTransformer(
d_model=d_model,
nhead=nhead,
dim_feedforward=d_model * 4,
dropout=0.0
)
def forward(self, bev_feature, status_encoding, interpolated_traj=None) -> Dict[str, torch.Tensor]:
# vocab: 4096, 40, 3
# bev_feature: B, 32, C
# embedded_vocab: B, 4096, C
vocab = self.vocab.data
L, HORIZON, _ = vocab.shape
B = bev_feature.shape[0]
# vocab = vocab[None].repeat(B, 1, 1, 1) + vocab_offset #(B, 4096, 40, 3)
if self.use_nerf:
vocab = torch.cat(
[
nerf_positional_encoding(vocab[..., :2]),
torch.cos(vocab[..., -1])[..., None],
torch.sin(vocab[..., -1])[..., None],
], dim=-1
)
if self.normalize_vocab_pos:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None]
embedded_vocab = self.encoder(embedded_vocab).repeat(B, 1, 1)
else:
embedded_vocab = self.pos_embed(vocab.view(L, -1))[None].repeat(B, 1, 1)
tr_out = self.transformer(embedded_vocab, bev_feature)
dist_status = tr_out + status_encoding.unsqueeze(1)
result = {}
# selected_indices: B,
for k, head in self.heads.items():
if k == 'imi':
result[k] = head(dist_status).squeeze(-1)
else:
result[k] = head(dist_status).squeeze(-1).sigmoid()
scores = (
0.05 * result['imi'].softmax(-1).log() +
0.5 * result['noc'].log() +
0.5 * result['da'].log() +
8.0 * (5 * result['ttc'] + 2 * result['comfort'] + 5 * result['progress']).log()
)
selected_indices_raw = scores.argmax(1)
# choose top-512 trajectory
K = 64
_, top_512_indices = torch.topk(scores, K, dim=1, largest=True)
batch_indices = torch.arange(embedded_vocab.size(0))[..., None].repeat(1, K).to(embedded_vocab.device)
embedded_vocab_512 = embedded_vocab[batch_indices, top_512_indices]
# choose top-512 embedding
# top-512 embedding go into new transformer and add old status encodeing
tr_out_512 = (
self.regression_transformer(embedded_vocab_512, bev_feature) +
status_encoding.unsqueeze(1)
)
# output of transformer head goes into regression_mlp
# 用tanh控制 xy offset在-2到2m, heading在-0.5到0.5弧度
offset_512_xy = self.offset_xy(tr_out_512)
offset_512_heading = self.offset_heading(tr_out_512)
offset_512 = torch.cat([
offset_512_xy.view(B, K, HORIZON // 2, 2) * self.offset_xy_bound,
offset_512_heading.view(B, K, HORIZON // 2, 1) * self.offset_heading_bound
], -1).contiguous()
# pad 0 to (40*3)
padded_offset_512 = torch.cat([
torch.zeros_like(offset_512),
offset_512
], dim=2)
# get new offset trajectory
final_traj = vocab[None, ...].repeat(B, 1, 1, 1)[batch_indices, top_512_indices] + padded_offset_512
# residual addition of output of transformer and new offset trajectory with mlp
# todo tuning
# final_traj_embed = self.mlp_pos_embed(final_traj.view(B, 512, 40 * 3))
# final_traj_embed = self.encoder_offset(final_traj_embed)
# tr_out_imi = (
# self.transformer(final_traj_embed, bev_feature)
# +status_encoding.unsqueeze(1)
# )
# then go into the imi_head to predict the imi_score
# result["imi_512"] = self.imi_regression_head(tr_out_imi).squeeze(-1)
# choose the max score of result["imi_512"]
# score_final = result["imi_512"].softmax(-1)
# selected_indice = score_final.argmax(1)
result["trajectory_offset"] = final_traj
# find the position of selected_indices_raw in top_512_indices
# 将 selected_indices_raw 扩展为与 top_512_indices 形状相同的 tensor
selected_indices_expanded = selected_indices_raw[:, None].expand(-1, top_512_indices.size(1))
# 使用广播找到 selected_indices_raw 在 top_512_indices 中的位置
matches = (top_512_indices == selected_indices_expanded).int() # 转换为整数张量
# 对每个 batch 找到匹配的位置索引
positions = torch.argmax(matches, dim=1)
result["trajectory_offset"] = final_traj
pred_traj = final_traj[
torch.arange(final_traj.size(0)),
positions
]
result["trajectory"] = pred_traj
# result["trajectory"] = self.vocab.data[selected_indices_raw]
result["trajectory_vocab"] = self.vocab.data
return result
|