File size: 7,981 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import pickle
from typing import Any, Union

import numpy as np
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler

from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.hydra.hydra_features import HydraFeatureBuilder, HydraTargetBuilder
from navsim.agents.hydra.hydra_model_pe_nodet_beta import HydraModelPENoDetBeta
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.agents.vadv2.vadv2_loss import three_to_two_classes
from navsim.common.dataclasses import SensorConfig
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)

DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT')
TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT')

from typing import Dict, List

try:
    from navsim.agents.utils.positional_encoding import SinePositionalEncoding3D
except:
    print('sine pe not registered')
    pass

import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from navsim.agents.abstract_agent import AbstractAgent


def hydra_nodet_beta_loss(
        targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], config: Vadv2Config,
        vocab_pdm_score
):
    """
    Helper function calculating complete loss of Transfuser
    :param targets: dictionary of name tensor pairings
    :param predictions: dictionary of name tensor pairings
    :param config: global Transfuser config
    :return: combined loss value
    """

    noc, da, ttc, comfort, progress = (predictions['noc'], predictions['da'],
                                       predictions['ttc'],
                                       predictions['comfort'], predictions['progress'])
    imi = predictions['imi']
    # 2 cls
    da_loss = F.binary_cross_entropy(da, vocab_pdm_score['da'].to(da.dtype))
    ttc_loss = F.binary_cross_entropy(ttc, vocab_pdm_score['ttc'].to(da.dtype))
    comfort_loss = F.binary_cross_entropy(comfort, vocab_pdm_score['comfort'].to(da.dtype))
    noc_loss = F.binary_cross_entropy(noc, three_to_two_classes(vocab_pdm_score['noc'].to(da.dtype)))
    progress_loss = F.l1_loss(progress, vocab_pdm_score['progress'].to(progress.dtype))

    vocab = predictions["trajectory_vocab"]
    # B, 8 (4 secs, 0.5Hz), 3
    target_traj = targets["trajectory"]
    # 4, 9, ..., 39
    sampled_timepoints = [5 * k - 1 for k in range(1, 9)]
    B = target_traj.shape[0]
    l2_distance = -((vocab[:, sampled_timepoints][None].repeat(B, 1, 1, 1) - target_traj[:, None]) ** 2) / config.sigma
    imi_loss = F.cross_entropy(imi, l2_distance.sum((-2, -1)).softmax(1))

    imi_loss_final = config.trajectory_imi_weight * imi_loss

    noc_loss_final = config.trajectory_pdm_weight['noc'] * noc_loss
    da_loss_final = config.trajectory_pdm_weight['da'] * da_loss
    ttc_loss_final = config.trajectory_pdm_weight['ttc'] * ttc_loss
    progress_loss_final = config.trajectory_pdm_weight['progress'] * progress_loss
    comfort_loss_final = config.trajectory_pdm_weight['comfort'] * comfort_loss

    loss = (
            imi_loss_final
            + noc_loss_final
            + da_loss_final
            + ttc_loss_final
            + progress_loss_final
            + comfort_loss_final

    )
    return loss, {
        'imi_loss': imi_loss_final,
        'pdm_noc_loss': noc_loss_final,
        'pdm_da_loss': da_loss_final,
        'pdm_ttc_loss': ttc_loss_final,
        'pdm_progress_loss': progress_loss_final,
        'pdm_comfort_loss': comfort_loss_final
    }


class HydraAgentPENoDetBeta(AbstractAgent):
    def __init__(
            self,
            config: HydraConfig,
            lr: float,
            checkpoint_path: str = None,
            pdm_split=None,
            metrics=None,
    ):
        super().__init__()
        config.trajectory_pdm_weight = {
            'noc': 3.0,
            'da': 3.0,
            'ttc': config.ttc_weight,
            'progress': config.progress_weight,
            'comfort': 1.0,
        }
        self._config = config
        self._lr = lr
        self.metrics = metrics
        self._checkpoint_path = checkpoint_path
        self.vadv2_model = HydraModelPENoDetBeta(config)
        self.vocab_size = config.vocab_size
        self.backbone_wd = config.backbone_wd
        new_pkl_dir = f'vocab_score_full_{self.vocab_size}_navtrain'
        self.vocab_pdm_score_full = pickle.load(
            open(f'{TRAJ_PDM_ROOT}/{new_pkl_dir}/{pdm_split}.pkl', 'rb'))

    def name(self) -> str:
        """Inherited, see superclass."""

        return self.__class__.__name__

    def initialize(self) -> None:
        """Inherited, see superclass."""
        # if torch.cuda.is_available():
        #     state_dict: Dict[str, Any] = torch.load(self._checkpoint_path)["state_dict"]
        # else:
        #     state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))[
        #         "state_dict"]
        state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
        self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})

    def get_sensor_config(self) -> SensorConfig:
        """Inherited, see superclass."""
        return SensorConfig(
            cam_f0=[0, 1, 2, 3],
            cam_l0=[0, 1, 2, 3],
            cam_l1=[0, 1, 2, 3],
            cam_l2=[0, 1, 2, 3],
            cam_r0=[0, 1, 2, 3],
            cam_r1=[0, 1, 2, 3],
            cam_r2=[0, 1, 2, 3],
            cam_b0=[0, 1, 2, 3],
            lidar_pc=[],
        )

    def get_target_builders(self) -> List[AbstractTargetBuilder]:
        return [HydraTargetBuilder(config=self._config)]

    def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
        return [HydraFeatureBuilder(config=self._config)]

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        return self.vadv2_model(features)

    def forward_train(self, features, interpolated_traj):
        return self.vadv2_model(features, interpolated_traj)

    def compute_loss(
            self,
            features: Dict[str, torch.Tensor],
            targets: Dict[str, torch.Tensor],
            predictions: Dict[str, torch.Tensor],
            tokens=None
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        # get the pdm score by tokens
        scores = {}
        for k in self.metrics:
            tmp = [self.vocab_pdm_score_full[token][k][None] for token in tokens]
            scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0))
                         .to(predictions['trajectory'].device))
        return hydra_nodet_beta_loss(targets, predictions, self._config, scores)

    def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
        backbone_params_name = '_backbone.image_encoder'
        img_backbone_params = list(
            filter(lambda kv: backbone_params_name in kv[0], self.vadv2_model.named_parameters()))
        default_params = list(filter(lambda kv: backbone_params_name not in kv[0], self.vadv2_model.named_parameters()))
        params_lr_dict = [
            {'params': [tmp[1] for tmp in default_params]},
            {
                'params': [tmp[1] for tmp in img_backbone_params],
                'lr': self._lr * self._config.lr_mult_backbone,
                'weight_decay': self.backbone_wd
            }
        ]
        return torch.optim.Adam(params_lr_dict, lr=self._lr)

    def get_training_callbacks(self) -> List[pl.Callback]:
        return [
            # TransfuserCallback(self._config),
            ModelCheckpoint(
                save_top_k=30,
                monitor="val/loss_epoch",
                mode="min",
                dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/",
                filename="{epoch:02d}-{step:04d}",
            )
        ]