File size: 5,039 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from functools import partial
from typing import Any, Union
from typing import Dict, List

import pytorch_lightning as pl
import torch
import torch.nn as nn
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler

from navsim.agents.abstract_agent import AbstractAgent
from navsim.agents.dreamer.backbone import Backbone
from navsim.agents.dreamer.dreamer_network import DreamerNetwork
from navsim.agents.dreamer.dreamer_network_cond import DreamerNetworkCondition
from navsim.agents.dreamer.hydra_dreamer_config import HydraDreamerConfig
from navsim.agents.dreamer.hydra_dreamer_loss_fn import latent_wm_loss
from navsim.agents.dreamer.hydra_dreamer_wm_features import HydraDreamerWmFeatureBuilder, HydraDreamerWmTargetBuilder
from navsim.agents.utils.layers import Mlp, NestedTensorBlock as Block
from navsim.common.dataclasses import SensorConfig
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)

NAVSIM_EXP_ROOT = os.getenv('NAVSIM_EXP_ROOT')
DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT')
TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT')


class HydraDreamerWmAgent(AbstractAgent):
    def __init__(
            self,
            config: HydraDreamerConfig,
            lr: float,
            checkpoint_path: str = None,
            pdm_split=None,
            metrics=None,
            conditional=False
    ):
        super().__init__()
        config.trajectory_pdm_weight = {
            'noc': 3.0,
            'da': 3.0,
            'ttc': 2.0,
            'progress': config.progress_weight,
            'comfort': 1.0,
        }
        self._config = config
        self._lr = lr
        self.metrics = metrics
        self._checkpoint_path = checkpoint_path
        self.vocab_size = config.vocab_size
        self.backbone_wd = config.backbone_wd
        self.conditional = conditional
        if conditional:
            self.dreamer_network = DreamerNetworkCondition(config)
        else:
            self.dreamer_network = DreamerNetwork(config)

    def name(self) -> str:
        """Inherited, see superclass."""

        return self.__class__.__name__

    def initialize(self) -> None:
        """Inherited, see superclass."""
        state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
        self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})

    def get_sensor_config(self) -> SensorConfig:
        """Inherited, see superclass."""
        return SensorConfig(
            cam_f0=True,
            cam_l0=True,
            cam_l1=True,
            cam_l2=True,
            cam_r0=True,
            cam_r1=True,
            cam_r2=True,
            cam_b0=True,
            lidar_pc=[],
        )

    def get_target_builders(self) -> List[AbstractTargetBuilder]:
        return [HydraDreamerWmTargetBuilder(config=self._config)]

    def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
        return [HydraDreamerWmFeatureBuilder(config=self._config)]

    def _forward(self, features):
        return self.dreamer_network(features)

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        return self._forward(features)

    def forward_train(self, features, interpolated_traj):
        return self._forward(features)

    def compute_loss(
            self,
            features: Dict[str, torch.Tensor],
            targets: Dict[str, torch.Tensor],
            predictions: Dict[str, torch.Tensor],
            tokens=None
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        return latent_wm_loss(targets, predictions, self._config, self.dreamer_network.fixed_vit)

    def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
        backbone_params_name = 'siamese_vit'
        img_backbone_params = list(
            filter(lambda kv: backbone_params_name in kv[0], self.dreamer_network.named_parameters())
        )
        default_params = list(
            filter(lambda kv: backbone_params_name not in kv[0], self.dreamer_network.named_parameters())
        )
        params_lr_dict = [
            {'params': [tmp[1] for tmp in default_params]},
            {
                'params': [tmp[1] for tmp in img_backbone_params],
                'lr': self._lr * self._config.lr_mult_backbone,
                'weight_decay': self.backbone_wd
            }
        ]
        return torch.optim.Adam(params_lr_dict, lr=self._lr)

    def get_training_callbacks(self) -> List[pl.Callback]:
        return [
            # TransfuserCallback(self._config),
            ModelCheckpoint(
                save_top_k=30,
                monitor="val/loss_epoch",
                mode="min",
                dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/",
                filename="{epoch:02d}-{step:04d}",
            )
        ]