File size: 5,892 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from typing import Dict
import numpy as np
import torch
import torch.nn as nn

from navsim.agents.transfuser.transfuser_config import TransfuserConfig
from navsim.agents.transfuser.transfuser_backbone import TransfuserBackbone
from navsim.common.enums import StateSE2Index
from navsim.agents.transfuser.transfuser_features import BoundingBox2DIndex


class TransfuserModel(nn.Module):
    def __init__(self, config: TransfuserConfig):

        super().__init__()

        self._query_splits = [
            1,
            config.num_bounding_boxes,
        ]

        self._config = config
        self._backbone = TransfuserBackbone(config)

        self._keyval_embedding = nn.Embedding(
            8**2 + 1, config.tf_d_model
        )  # 8x8 feature grid + trajectory
        self._query_embedding = nn.Embedding(sum(self._query_splits), config.tf_d_model)

        # usually, the BEV features are variable in size.
        self._bev_downscale = nn.Conv2d(512, config.tf_d_model, kernel_size=1)
        self._status_encoding = nn.Linear(4 + 2 + 2, config.tf_d_model)

        self._bev_semantic_head = nn.Sequential(
            nn.Conv2d(
                config.bev_features_channels,
                config.bev_features_channels,
                kernel_size=(3, 3),
                stride=1,
                padding=(1, 1),
                bias=True,
            ),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                config.bev_features_channels,
                config.num_bev_classes,
                kernel_size=(1, 1),
                stride=1,
                padding=0,
                bias=True,
            ),
            nn.Upsample(
                size=(config.lidar_resolution_height // 2, config.lidar_resolution_width),
                mode="bilinear",
                align_corners=False,
            ),
        )

        tf_decoder_layer = nn.TransformerDecoderLayer(
            d_model=config.tf_d_model,
            nhead=config.tf_num_head,
            dim_feedforward=config.tf_d_ffn,
            dropout=config.tf_dropout,
            batch_first=True,
        )

        self._tf_decoder = nn.TransformerDecoder(tf_decoder_layer, config.tf_num_layers)
        self._agent_head = AgentHead(
            num_agents=config.num_bounding_boxes,
            d_ffn=config.tf_d_ffn,
            d_model=config.tf_d_model,
        )

        self._trajectory_head = TrajectoryHead(
            num_poses=config.trajectory_sampling.num_poses,
            d_ffn=config.tf_d_ffn,
            d_model=config.tf_d_model,
        )

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:

        camera_feature: torch.Tensor = features["camera_feature"]
        lidar_feature: torch.Tensor = features["lidar_feature"]
        status_feature: torch.Tensor = features["status_feature"]

        batch_size = status_feature.shape[0]

        bev_feature_upscale, bev_feature, _ = self._backbone(camera_feature, lidar_feature)

        bev_feature = self._bev_downscale(bev_feature).flatten(-2, -1)
        bev_feature = bev_feature.permute(0, 2, 1)
        status_encoding = self._status_encoding(status_feature)

        keyval = torch.concatenate([bev_feature, status_encoding[:, None]], dim=1)
        keyval += self._keyval_embedding.weight[None, ...]

        query = self._query_embedding.weight[None, ...].repeat(batch_size, 1, 1)
        query_out = self._tf_decoder(query, keyval)

        bev_semantic_map = self._bev_semantic_head(bev_feature_upscale)
        trajectory_query, agents_query = query_out.split(self._query_splits, dim=1)

        output: Dict[str, torch.Tensor] = {"bev_semantic_map": bev_semantic_map}
        trajectory = self._trajectory_head(trajectory_query)
        output.update(trajectory)

        agents = self._agent_head(agents_query)
        output.update(agents)

        return output


class AgentHead(nn.Module):
    def __init__(

        self,

        num_agents: int,

        d_ffn: int,

        d_model: int,

    ):
        super(AgentHead, self).__init__()

        self._num_objects = num_agents
        self._d_model = d_model
        self._d_ffn = d_ffn

        self._mlp_states = nn.Sequential(
            nn.Linear(self._d_model, self._d_ffn),
            nn.ReLU(),
            nn.Linear(self._d_ffn, BoundingBox2DIndex.size()),
        )

        self._mlp_label = nn.Sequential(
            nn.Linear(self._d_model, 1),
        )

    def forward(self, agent_queries) -> Dict[str, torch.Tensor]:

        agent_states = self._mlp_states(agent_queries)
        agent_states[..., BoundingBox2DIndex.POINT] = (
            agent_states[..., BoundingBox2DIndex.POINT].tanh() * 32
        )
        agent_states[..., BoundingBox2DIndex.HEADING] = (
            agent_states[..., BoundingBox2DIndex.HEADING].tanh() * np.pi
        )

        agent_labels = self._mlp_label(agent_queries).squeeze(dim=-1)

        return {"agent_states": agent_states, "agent_labels": agent_labels}


class TrajectoryHead(nn.Module):
    def __init__(self, num_poses: int, d_ffn: int, d_model: int):
        super(TrajectoryHead, self).__init__()

        self._num_poses = num_poses
        self._d_model = d_model
        self._d_ffn = d_ffn

        self._mlp = nn.Sequential(
            nn.Linear(self._d_model, self._d_ffn),
            nn.ReLU(),
            nn.Linear(self._d_ffn, num_poses * StateSE2Index.size()),
        )

    def forward(self, object_queries) -> Dict[str, torch.Tensor]:
        poses = self._mlp(object_queries).reshape(-1, self._num_poses, StateSE2Index.size())
        poses[..., StateSE2Index.HEADING] = poses[..., StateSE2Index.HEADING].tanh() * np.pi
        return {"trajectory": poses}