File size: 16,042 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
from enum import IntEnum
from typing import Any, Dict, List, Tuple
import cv2
import numpy as np
import numpy.typing as npt
import torch
from torchvision import transforms
from shapely import affinity
from shapely.geometry import Polygon, LineString
from nuplan.common.maps.abstract_map import AbstractMap, SemanticMapLayer, MapObject
from nuplan.common.actor_state.oriented_box import OrientedBox
from nuplan.common.actor_state.state_representation import StateSE2
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType
from navsim.agents.transfuser.transfuser_config import TransfuserConfig
from navsim.common.dataclasses import AgentInput, Scene, Annotations
from navsim.common.enums import BoundingBoxIndex, LidarIndex
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
from navsim.planning.training.abstract_feature_target_builder import (
AbstractFeatureBuilder,
AbstractTargetBuilder,
)
class TransfuserFeatureBuilder(AbstractFeatureBuilder):
def __init__(self, config: TransfuserConfig):
self._config = config
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "transfuser_feature"
def compute_features(self, agent_input: AgentInput) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
features = {}
features["camera_feature"] = self._get_camera_feature(agent_input)
features["lidar_feature"] = self._get_lidar_feature(agent_input)
features["status_feature"] = torch.concatenate(
[
torch.tensor(agent_input.ego_statuses[-1].driving_command, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[-1].ego_velocity, dtype=torch.float32),
torch.tensor(agent_input.ego_statuses[-1].ego_acceleration, dtype=torch.float32),
],
)
return features
def _get_camera_feature(self, agent_input: AgentInput) -> torch.Tensor:
"""
Extract stitched camera from AgentInput
:param agent_input: input dataclass
:return: stitched front view image as torch tensor
"""
cameras = agent_input.cameras[-1]
# Crop to ensure 4:1 aspect ratio
l0 = cameras.cam_l0.image[28:-28, 416:-416]
f0 = cameras.cam_f0.image[28:-28]
r0 = cameras.cam_r0.image[28:-28, 416:-416]
# stitch l0, f0, r0 images
stitched_image = np.concatenate([l0, f0, r0], axis=1)
resized_image = cv2.resize(stitched_image, (1024, 256))
tensor_image = transforms.ToTensor()(resized_image)
return tensor_image
def _get_lidar_feature(self, agent_input: AgentInput) -> torch.Tensor:
"""
Compute LiDAR feature as 2D histogram, according to Transfuser
:param agent_input: input dataclass
:return: LiDAR histogram as torch tensors
"""
# only consider (x,y,z) & swap axes for (N,3) numpy array
lidar_pc = agent_input.lidars[-1].lidar_pc[LidarIndex.POSITION].T
# NOTE: Code from
# https://github.com/autonomousvision/carla_garage/blob/main/team_code/data.py#L873
def splat_points(point_cloud):
# 256 x 256 grid
xbins = np.linspace(
self._config.lidar_min_x,
self._config.lidar_max_x,
(self._config.lidar_max_x - self._config.lidar_min_x)
* int(self._config.pixels_per_meter)
+ 1,
)
ybins = np.linspace(
self._config.lidar_min_y,
self._config.lidar_max_y,
(self._config.lidar_max_y - self._config.lidar_min_y)
* int(self._config.pixels_per_meter)
+ 1,
)
hist = np.histogramdd(point_cloud[:, :2], bins=(xbins, ybins))[0]
hist[hist > self._config.hist_max_per_pixel] = self._config.hist_max_per_pixel
overhead_splat = hist / self._config.hist_max_per_pixel
return overhead_splat
# Remove points above the vehicle
lidar_pc = lidar_pc[lidar_pc[..., 2] < self._config.max_height_lidar]
below = lidar_pc[lidar_pc[..., 2] <= self._config.lidar_split_height]
above = lidar_pc[lidar_pc[..., 2] > self._config.lidar_split_height]
above_features = splat_points(above)
if self._config.use_ground_plane:
below_features = splat_points(below)
features = np.stack([below_features, above_features], axis=-1)
else:
features = np.stack([above_features], axis=-1)
features = np.transpose(features, (2, 0, 1)).astype(np.float32)
return torch.tensor(features)
class TransfuserTargetBuilder(AbstractTargetBuilder):
def __init__(self, config: TransfuserConfig):
self._config = config
def get_unique_name(self) -> str:
"""Inherited, see superclass."""
return "transfuser_target"
def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
"""Inherited, see superclass."""
trajectory = torch.tensor(
scene.get_future_trajectory(
num_trajectory_frames=self._config.trajectory_sampling.num_poses
).poses
)
frame_idx = scene.scene_metadata.num_history_frames - 1
annotations = scene.frames[frame_idx].annotations
ego_pose = StateSE2(*scene.frames[frame_idx].ego_status.ego_pose)
agent_states, agent_labels = self._compute_agent_targets(annotations)
bev_semantic_map = self._compute_bev_semantic_map(annotations, scene.map_api, ego_pose)
return {
"trajectory": trajectory,
"agent_states": agent_states,
"agent_labels": agent_labels,
"bev_semantic_map": bev_semantic_map,
}
def _compute_agent_targets(self, annotations: Annotations) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Extracts 2D agent bounding boxes in ego coordinates
:param annotations: annotation dataclass
:return: tuple of bounding box values and labels (binary)
"""
max_agents = self._config.num_bounding_boxes
agent_states_list: List[npt.NDArray[np.float32]] = []
def _xy_in_lidar(x: float, y: float, config: TransfuserConfig) -> bool:
return (config.lidar_min_x <= x <= config.lidar_max_x) and (
config.lidar_min_y <= y <= config.lidar_max_y
)
for box, name in zip(annotations.boxes, annotations.names):
box_x, box_y, box_heading, box_length, box_width = (
box[BoundingBoxIndex.X],
box[BoundingBoxIndex.Y],
box[BoundingBoxIndex.HEADING],
box[BoundingBoxIndex.LENGTH],
box[BoundingBoxIndex.WIDTH],
)
if name == "vehicle" and _xy_in_lidar(box_x, box_y, self._config):
agent_states_list.append(
np.array([box_x, box_y, box_heading, box_length, box_width], dtype=np.float32)
)
agents_states_arr = np.array(agent_states_list)
# filter num_instances nearest
agent_states = np.zeros((max_agents, BoundingBox2DIndex.size()), dtype=np.float32)
agent_labels = np.zeros(max_agents, dtype=bool)
if len(agents_states_arr) > 0:
distances = np.linalg.norm(agents_states_arr[..., BoundingBox2DIndex.POINT], axis=-1)
argsort = np.argsort(distances)[:max_agents]
# filter detections
agents_states_arr = agents_states_arr[argsort]
agent_states[: len(agents_states_arr)] = agents_states_arr
agent_labels[: len(agents_states_arr)] = True
return torch.tensor(agent_states), torch.tensor(agent_labels)
def _compute_bev_semantic_map(
self, annotations: Annotations, map_api: AbstractMap, ego_pose: StateSE2
) -> torch.Tensor:
"""
Creates sematic map in BEV
:param annotations: annotation dataclass
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:return: 2D torch tensor of semantic labels
"""
bev_semantic_map = np.zeros(self._config.bev_semantic_frame, dtype=np.int64)
for label, (entity_type, layers) in self._config.bev_semantic_classes.items():
if entity_type == "polygon":
entity_mask = self._compute_map_polygon_mask(map_api, ego_pose, layers)
elif entity_type == "linestring":
entity_mask = self._compute_map_linestring_mask(map_api, ego_pose, layers)
else:
entity_mask = self._compute_box_mask(annotations, layers)
bev_semantic_map[entity_mask] = label
return torch.Tensor(bev_semantic_map)
def _compute_map_polygon_mask(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> npt.NDArray[np.bool_]:
"""
Compute binary mask given a map layer class
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: binary mask as numpy array
"""
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self._config.bev_radius, layers=layers
)
map_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for layer in layers:
for map_object in map_object_dict[layer]:
polygon: Polygon = self._geometry_local_coords(map_object.polygon, ego_pose)
exterior = np.array(polygon.exterior.coords).reshape((-1, 1, 2))
exterior = self._coords_to_pixel(exterior)
cv2.fillPoly(map_polygon_mask, [exterior], color=255)
# OpenCV has origin on top-left corner
map_polygon_mask = np.rot90(map_polygon_mask)[::-1]
return map_polygon_mask > 0
def _compute_map_linestring_mask(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> npt.NDArray[np.bool_]:
"""
Compute binary of linestring given a map layer class
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: binary mask as numpy array
"""
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self._config.bev_radius, layers=layers
)
map_linestring_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for layer in layers:
for map_object in map_object_dict[layer]:
linestring: LineString = self._geometry_local_coords(
map_object.baseline_path.linestring, ego_pose
)
points = np.array(linestring.coords).reshape((-1, 1, 2))
points = self._coords_to_pixel(points)
cv2.polylines(map_linestring_mask, [points], isClosed=False, color=255, thickness=2)
# OpenCV has origin on top-left corner
map_linestring_mask = np.rot90(map_linestring_mask)[::-1]
return map_linestring_mask > 0
def _compute_box_mask(
self, annotations: Annotations, layers: TrackedObjectType
) -> npt.NDArray[np.bool_]:
"""
Compute binary of bounding boxes in BEV space
:param annotations: annotation dataclass
:param layers: bounding box labels to include
:return: binary mask as numpy array
"""
box_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
for name_value, box_value in zip(annotations.names, annotations.boxes):
agent_type = tracked_object_types[name_value]
if agent_type in layers:
# box_value = (x, y, z, length, width, height, yaw) TODO: add intenum
x, y, heading = box_value[0], box_value[1], box_value[-1]
box_length, box_width, box_height = box_value[3], box_value[4], box_value[5]
agent_box = OrientedBox(StateSE2(x, y, heading), box_length, box_width, box_height)
exterior = np.array(agent_box.geometry.exterior.coords).reshape((-1, 1, 2))
exterior = self._coords_to_pixel(exterior)
cv2.fillPoly(box_polygon_mask, [exterior], color=255)
# OpenCV has origin on top-left corner
box_polygon_mask = np.rot90(box_polygon_mask)[::-1]
return box_polygon_mask > 0
@staticmethod
def _query_map_objects(
self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]
) -> List[MapObject]:
"""
Queries map objects
:param map_api: map interface of nuPlan
:param ego_pose: ego pose in global frame
:param layers: map layers
:return: list of map objects
"""
# query map api with interesting layers
map_object_dict = map_api.get_proximal_map_objects(
point=ego_pose.point, radius=self, layers=layers
)
map_objects: List[MapObject] = []
for layer in layers:
map_objects += map_object_dict[layer]
return map_objects
@staticmethod
def _geometry_local_coords(geometry: Any, origin: StateSE2) -> Any:
"""
Transform shapely geometry in local coordinates of origin.
:param geometry: shapely geometry
:param origin: pose dataclass
:return: shapely geometry
"""
a = np.cos(origin.heading)
b = np.sin(origin.heading)
d = -np.sin(origin.heading)
e = np.cos(origin.heading)
xoff = -origin.x
yoff = -origin.y
translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])
return rotated_geometry
def _coords_to_pixel(self, coords):
"""
Transform local coordinates in pixel indices of BEV map
:param coords: _description_
:return: _description_
"""
# NOTE: remove half in backward direction
pixel_center = np.array([[0, self._config.bev_pixel_width / 2.0]])
coords_idcs = (coords / self._config.bev_pixel_size) + pixel_center
return coords_idcs.astype(np.int32)
class BoundingBox2DIndex(IntEnum):
_X = 0
_Y = 1
_HEADING = 2
_LENGTH = 3
_WIDTH = 4
@classmethod
def size(cls):
valid_attributes = [
attribute
for attribute in dir(cls)
if attribute.startswith("_")
and not attribute.startswith("__")
and not callable(getattr(cls, attribute))
]
return len(valid_attributes)
@classmethod
@property
def X(cls):
return cls._X
@classmethod
@property
def Y(cls):
return cls._Y
@classmethod
@property
def HEADING(cls):
return cls._HEADING
@classmethod
@property
def LENGTH(cls):
return cls._LENGTH
@classmethod
@property
def WIDTH(cls):
return cls._WIDTH
@classmethod
@property
def POINT(cls):
# assumes X, Y have subsequent indices
return slice(cls._X, cls._Y + 1)
@classmethod
@property
def STATE_SE2(cls):
# assumes X, Y, HEADING have subsequent indices
return slice(cls._X, cls._HEADING + 1)
|