File size: 16,042 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
from enum import IntEnum
from typing import Any, Dict, List, Tuple
import cv2
import numpy as np
import numpy.typing as npt

import torch
from torchvision import transforms

from shapely import affinity
from shapely.geometry import Polygon, LineString

from nuplan.common.maps.abstract_map import AbstractMap, SemanticMapLayer, MapObject
from nuplan.common.actor_state.oriented_box import OrientedBox
from nuplan.common.actor_state.state_representation import StateSE2
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType

from navsim.agents.transfuser.transfuser_config import TransfuserConfig
from navsim.common.dataclasses import AgentInput, Scene, Annotations
from navsim.common.enums import BoundingBoxIndex, LidarIndex
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)


class TransfuserFeatureBuilder(AbstractFeatureBuilder):
    def __init__(self, config: TransfuserConfig):
        self._config = config

    def get_unique_name(self) -> str:
        """Inherited, see superclass."""
        return "transfuser_feature"

    def compute_features(self, agent_input: AgentInput) -> Dict[str, torch.Tensor]:
        """Inherited, see superclass."""
        features = {}

        features["camera_feature"] = self._get_camera_feature(agent_input)
        features["lidar_feature"] = self._get_lidar_feature(agent_input)
        features["status_feature"] = torch.concatenate(
            [
                torch.tensor(agent_input.ego_statuses[-1].driving_command, dtype=torch.float32),
                torch.tensor(agent_input.ego_statuses[-1].ego_velocity, dtype=torch.float32),
                torch.tensor(agent_input.ego_statuses[-1].ego_acceleration, dtype=torch.float32),
            ],
        )

        return features

    def _get_camera_feature(self, agent_input: AgentInput) -> torch.Tensor:
        """

        Extract stitched camera from AgentInput

        :param agent_input: input dataclass

        :return: stitched front view image as torch tensor

        """

        cameras = agent_input.cameras[-1]

        # Crop to ensure 4:1 aspect ratio
        l0 = cameras.cam_l0.image[28:-28, 416:-416]
        f0 = cameras.cam_f0.image[28:-28]
        r0 = cameras.cam_r0.image[28:-28, 416:-416]

        # stitch l0, f0, r0 images
        stitched_image = np.concatenate([l0, f0, r0], axis=1)
        resized_image = cv2.resize(stitched_image, (1024, 256))
        tensor_image = transforms.ToTensor()(resized_image)

        return tensor_image

    def _get_lidar_feature(self, agent_input: AgentInput) -> torch.Tensor:
        """

        Compute LiDAR feature as 2D histogram, according to Transfuser

        :param agent_input: input dataclass

        :return: LiDAR histogram as torch tensors

        """

        # only consider (x,y,z) & swap axes for (N,3) numpy array
        lidar_pc = agent_input.lidars[-1].lidar_pc[LidarIndex.POSITION].T

        # NOTE: Code from
        # https://github.com/autonomousvision/carla_garage/blob/main/team_code/data.py#L873
        def splat_points(point_cloud):
            # 256 x 256 grid
            xbins = np.linspace(
                self._config.lidar_min_x,
                self._config.lidar_max_x,
                (self._config.lidar_max_x - self._config.lidar_min_x)
                * int(self._config.pixels_per_meter)
                + 1,
            )
            ybins = np.linspace(
                self._config.lidar_min_y,
                self._config.lidar_max_y,
                (self._config.lidar_max_y - self._config.lidar_min_y)
                * int(self._config.pixels_per_meter)
                + 1,
            )
            hist = np.histogramdd(point_cloud[:, :2], bins=(xbins, ybins))[0]
            hist[hist > self._config.hist_max_per_pixel] = self._config.hist_max_per_pixel
            overhead_splat = hist / self._config.hist_max_per_pixel
            return overhead_splat

        # Remove points above the vehicle
        lidar_pc = lidar_pc[lidar_pc[..., 2] < self._config.max_height_lidar]
        below = lidar_pc[lidar_pc[..., 2] <= self._config.lidar_split_height]
        above = lidar_pc[lidar_pc[..., 2] > self._config.lidar_split_height]
        above_features = splat_points(above)
        if self._config.use_ground_plane:
            below_features = splat_points(below)
            features = np.stack([below_features, above_features], axis=-1)
        else:
            features = np.stack([above_features], axis=-1)
        features = np.transpose(features, (2, 0, 1)).astype(np.float32)

        return torch.tensor(features)


class TransfuserTargetBuilder(AbstractTargetBuilder):
    def __init__(self, config: TransfuserConfig):
        self._config = config

    def get_unique_name(self) -> str:
        """Inherited, see superclass."""
        return "transfuser_target"

    def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
        """Inherited, see superclass."""

        trajectory = torch.tensor(
            scene.get_future_trajectory(
                num_trajectory_frames=self._config.trajectory_sampling.num_poses
            ).poses
        )
        frame_idx = scene.scene_metadata.num_history_frames - 1
        annotations = scene.frames[frame_idx].annotations
        ego_pose = StateSE2(*scene.frames[frame_idx].ego_status.ego_pose)

        agent_states, agent_labels = self._compute_agent_targets(annotations)
        bev_semantic_map = self._compute_bev_semantic_map(annotations, scene.map_api, ego_pose)

        return {
            "trajectory": trajectory,
            "agent_states": agent_states,
            "agent_labels": agent_labels,
            "bev_semantic_map": bev_semantic_map,
        }

    def _compute_agent_targets(self, annotations: Annotations) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Extracts 2D agent bounding boxes in ego coordinates

        :param annotations: annotation dataclass

        :return: tuple of bounding box values and labels (binary)

        """

        max_agents = self._config.num_bounding_boxes
        agent_states_list: List[npt.NDArray[np.float32]] = []

        def _xy_in_lidar(x: float, y: float, config: TransfuserConfig) -> bool:
            return (config.lidar_min_x <= x <= config.lidar_max_x) and (
                config.lidar_min_y <= y <= config.lidar_max_y
            )

        for box, name in zip(annotations.boxes, annotations.names):
            box_x, box_y, box_heading, box_length, box_width = (
                box[BoundingBoxIndex.X],
                box[BoundingBoxIndex.Y],
                box[BoundingBoxIndex.HEADING],
                box[BoundingBoxIndex.LENGTH],
                box[BoundingBoxIndex.WIDTH],
            )

            if name == "vehicle" and _xy_in_lidar(box_x, box_y, self._config):
                agent_states_list.append(
                    np.array([box_x, box_y, box_heading, box_length, box_width], dtype=np.float32)
                )

        agents_states_arr = np.array(agent_states_list)

        # filter num_instances nearest
        agent_states = np.zeros((max_agents, BoundingBox2DIndex.size()), dtype=np.float32)
        agent_labels = np.zeros(max_agents, dtype=bool)

        if len(agents_states_arr) > 0:
            distances = np.linalg.norm(agents_states_arr[..., BoundingBox2DIndex.POINT], axis=-1)
            argsort = np.argsort(distances)[:max_agents]

            # filter detections
            agents_states_arr = agents_states_arr[argsort]
            agent_states[: len(agents_states_arr)] = agents_states_arr
            agent_labels[: len(agents_states_arr)] = True

        return torch.tensor(agent_states), torch.tensor(agent_labels)

    def _compute_bev_semantic_map(

        self, annotations: Annotations, map_api: AbstractMap, ego_pose: StateSE2

    ) -> torch.Tensor:
        """

        Creates sematic map in BEV

        :param annotations: annotation dataclass

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :return: 2D torch tensor of semantic labels

        """

        bev_semantic_map = np.zeros(self._config.bev_semantic_frame, dtype=np.int64)
        for label, (entity_type, layers) in self._config.bev_semantic_classes.items():
            if entity_type == "polygon":
                entity_mask = self._compute_map_polygon_mask(map_api, ego_pose, layers)
            elif entity_type == "linestring":
                entity_mask = self._compute_map_linestring_mask(map_api, ego_pose, layers)
            else:
                entity_mask = self._compute_box_mask(annotations, layers)
            bev_semantic_map[entity_mask] = label

        return torch.Tensor(bev_semantic_map)

    def _compute_map_polygon_mask(

        self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary mask given a map layer class

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: binary mask as numpy array

        """

        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self._config.bev_radius, layers=layers
        )
        map_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for layer in layers:
            for map_object in map_object_dict[layer]:
                polygon: Polygon = self._geometry_local_coords(map_object.polygon, ego_pose)
                exterior = np.array(polygon.exterior.coords).reshape((-1, 1, 2))
                exterior = self._coords_to_pixel(exterior)
                cv2.fillPoly(map_polygon_mask, [exterior], color=255)
        # OpenCV has origin on top-left corner
        map_polygon_mask = np.rot90(map_polygon_mask)[::-1]
        return map_polygon_mask > 0

    def _compute_map_linestring_mask(

        self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary of linestring given a map layer class

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: binary mask as numpy array

        """
        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self._config.bev_radius, layers=layers
        )
        map_linestring_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for layer in layers:
            for map_object in map_object_dict[layer]:
                linestring: LineString = self._geometry_local_coords(
                    map_object.baseline_path.linestring, ego_pose
                )
                points = np.array(linestring.coords).reshape((-1, 1, 2))
                points = self._coords_to_pixel(points)
                cv2.polylines(map_linestring_mask, [points], isClosed=False, color=255, thickness=2)
        # OpenCV has origin on top-left corner
        map_linestring_mask = np.rot90(map_linestring_mask)[::-1]
        return map_linestring_mask > 0

    def _compute_box_mask(

        self, annotations: Annotations, layers: TrackedObjectType

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary of bounding boxes in BEV space

        :param annotations: annotation dataclass

        :param layers: bounding box labels to include

        :return: binary mask as numpy array

        """
        box_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for name_value, box_value in zip(annotations.names, annotations.boxes):
            agent_type = tracked_object_types[name_value]
            if agent_type in layers:
                # box_value = (x, y, z, length, width, height, yaw) TODO: add intenum
                x, y, heading = box_value[0], box_value[1], box_value[-1]
                box_length, box_width, box_height = box_value[3], box_value[4], box_value[5]
                agent_box = OrientedBox(StateSE2(x, y, heading), box_length, box_width, box_height)
                exterior = np.array(agent_box.geometry.exterior.coords).reshape((-1, 1, 2))
                exterior = self._coords_to_pixel(exterior)
                cv2.fillPoly(box_polygon_mask, [exterior], color=255)
        # OpenCV has origin on top-left corner
        box_polygon_mask = np.rot90(box_polygon_mask)[::-1]
        return box_polygon_mask > 0

    @staticmethod
    def _query_map_objects(

        self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> List[MapObject]:
        """

        Queries map objects

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: list of map objects

        """

        # query map api with interesting layers
        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self, layers=layers
        )
        map_objects: List[MapObject] = []
        for layer in layers:
            map_objects += map_object_dict[layer]
        return map_objects

    @staticmethod
    def _geometry_local_coords(geometry: Any, origin: StateSE2) -> Any:
        """

        Transform shapely geometry in local coordinates of origin.

        :param geometry: shapely geometry

        :param origin: pose dataclass

        :return: shapely geometry

        """

        a = np.cos(origin.heading)
        b = np.sin(origin.heading)
        d = -np.sin(origin.heading)
        e = np.cos(origin.heading)
        xoff = -origin.x
        yoff = -origin.y

        translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
        rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])

        return rotated_geometry

    def _coords_to_pixel(self, coords):
        """

        Transform local coordinates in pixel indices of BEV map

        :param coords: _description_

        :return: _description_

        """

        # NOTE: remove half in backward direction
        pixel_center = np.array([[0, self._config.bev_pixel_width / 2.0]])
        coords_idcs = (coords / self._config.bev_pixel_size) + pixel_center

        return coords_idcs.astype(np.int32)


class BoundingBox2DIndex(IntEnum):

    _X = 0
    _Y = 1
    _HEADING = 2
    _LENGTH = 3
    _WIDTH = 4

    @classmethod
    def size(cls):
        valid_attributes = [
            attribute
            for attribute in dir(cls)
            if attribute.startswith("_")
            and not attribute.startswith("__")
            and not callable(getattr(cls, attribute))
        ]
        return len(valid_attributes)

    @classmethod
    @property
    def X(cls):
        return cls._X

    @classmethod
    @property
    def Y(cls):
        return cls._Y

    @classmethod
    @property
    def HEADING(cls):
        return cls._HEADING

    @classmethod
    @property
    def LENGTH(cls):
        return cls._LENGTH

    @classmethod
    @property
    def WIDTH(cls):
        return cls._WIDTH

    @classmethod
    @property
    def POINT(cls):
        # assumes X, Y have subsequent indices
        return slice(cls._X, cls._Y + 1)

    @classmethod
    @property
    def STATE_SE2(cls):
        # assumes X, Y, HEADING have subsequent indices
        return slice(cls._X, cls._HEADING + 1)