File size: 9,952 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""
Implements the TransFuser vision backbone.
"""
import math
import torch
from torch import nn
import torch.nn.functional as F
import timm
import copy
from torch.utils.checkpoint import checkpoint
from navsim.agents.backbones.eva import EVAViT
from navsim.agents.transfuser.transfuser_backbone import GPT
from timm.models.vision_transformer import VisionTransformer
from navsim.agents.utils.vit import DAViT
class TransfuserBackboneViT(nn.Module):
"""
Multi-scale Fusion Transformer for image + LiDAR feature fusion
"""
def __init__(self, config):
super().__init__()
self.config = config
# debug
# vit-l
if config.backbone_type == 'vit':
self.image_encoder = DAViT(ckpt=config.vit_ckpt)
elif config.backbone_type == 'eva':
self.image_encoder = EVAViT(
img_size=512, # img_size for short side
patch_size=16,
window_size=16,
global_window_size=32,
# If use square image (e.g., set global_window_size=0, else global_window_size=img_size // 16)
in_chans=3,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4 * 2 / 3,
window_block_indexes=(
list(range(0, 2)) + list(range(3, 5)) + list(range(6, 8)) + list(range(9, 11)) + list(
range(12, 14)) + list(range(15, 17)) + list(range(18, 20)) + list(range(21, 23))
),
qkv_bias=True,
drop_path_rate=0.3,
with_cp=True,
flash_attn=False,
xformers_attn=True
)
self.image_encoder.init_weights(config.eva_ckpt)
else:
raise ValueError('unsupported vit backbones')
if config.use_ground_plane:
in_channels = 2 * config.lidar_seq_len
else:
in_channels = config.lidar_seq_len
self.avgpool_img = nn.AdaptiveAvgPool2d(
(self.config.img_vert_anchors, self.config.img_horz_anchors)
)
self.lidar_encoder = timm.create_model(
config.lidar_architecture,
pretrained=False,
in_chans=in_channels,
features_only=True,
)
self.global_pool_lidar = nn.AdaptiveAvgPool2d(output_size=1)
self.avgpool_lidar = nn.AdaptiveAvgPool2d(
(self.config.lidar_vert_anchors, self.config.lidar_horz_anchors)
)
lidar_time_frames = [1, 1, 1, 1]
self.global_pool_img = nn.AdaptiveAvgPool2d(output_size=1)
start_index = 0
# Some networks have a stem layer
vit_channels = 1024
if len(self.lidar_encoder.return_layers) > 4:
start_index += 1
self.transformers = nn.ModuleList(
[
GPT(
n_embd=vit_channels,
config=config,
# lidar_video=self.lidar_video,
lidar_time_frames=lidar_time_frames[i],
)
for i in range(4)
]
)
self.lidar_channel_to_img = nn.ModuleList(
[
nn.Conv2d(
self.lidar_encoder.feature_info.info[start_index + i]["num_chs"],
vit_channels,
kernel_size=1,
)
for i in range(4)
]
)
self.img_channel_to_lidar = nn.ModuleList(
[
nn.Conv2d(
vit_channels,
self.lidar_encoder.feature_info.info[start_index + i]["num_chs"],
kernel_size=1,
)
for i in range(4)
]
)
self.num_features = self.lidar_encoder.feature_info.info[start_index + 3]["num_chs"]
# FPN fusion
channel = self.config.bev_features_channels
self.relu = nn.ReLU(inplace=True)
# top down
if self.config.detect_boxes or self.config.use_bev_semantic:
self.upsample = nn.Upsample(
scale_factor=self.config.bev_upsample_factor, mode="bilinear", align_corners=False
)
self.upsample2 = nn.Upsample(
size=(
self.config.lidar_resolution_height // self.config.bev_down_sample_factor,
self.config.lidar_resolution_width // self.config.bev_down_sample_factor,
),
mode="bilinear",
align_corners=False,
)
self.up_conv5 = nn.Conv2d(channel, channel, (3, 3), padding=1)
self.up_conv4 = nn.Conv2d(channel, channel, (3, 3), padding=1)
# lateral
self.c5_conv = nn.Conv2d(
self.lidar_encoder.feature_info.info[start_index + 3]["num_chs"], channel, (1, 1)
)
def top_down(self, x):
p5 = self.relu(self.c5_conv(x))
p4 = self.relu(self.up_conv5(self.upsample(p5)))
p3 = self.relu(self.up_conv4(self.upsample2(p4)))
return p3
def forward(self, image, lidar):
"""
Image + LiDAR feature fusion using transformers
Args:
image_list (list): list of input images
lidar_list (list): list of input LiDAR BEV
"""
image_features, lidar_features = image, lidar
# Generate an iterator for all the layers in the network that one can loop through.
lidar_layers = iter(self.lidar_encoder.items())
# Stem layer.
# In some architectures the stem is not a return layer, so we need to skip it.
if len(self.lidar_encoder.return_layers) > 4:
lidar_features = self.forward_layer_block(
lidar_layers, self.lidar_encoder.return_layers, lidar_features
)
# Loop through the 4 blocks of the network.
image_features = self.image_encoder(image_features)[0]
for i in range(4):
lidar_features = self.forward_layer_block(
lidar_layers, self.lidar_encoder.return_layers, lidar_features
)
image_features, lidar_features = self.fuse_features(image_features, lidar_features, i)
if self.config.detect_boxes or self.config.use_bev_semantic:
x4 = lidar_features
# image_feature_grid = None
# if self.config.use_semantic or self.config.use_depth:
# image_feature_grid = image_features
if self.config.transformer_decoder_join:
fused_features = lidar_features
else:
image_features = self.global_pool_img(image_features)
image_features = torch.flatten(image_features, 1)
lidar_features = self.global_pool_lidar(lidar_features)
lidar_features = torch.flatten(lidar_features, 1)
if self.config.add_features:
lidar_features = self.lidar_to_img_features_end(lidar_features)
fused_features = image_features + lidar_features
else:
fused_features = torch.cat((image_features, lidar_features), dim=1)
if self.config.detect_boxes or self.config.use_bev_semantic:
features = self.top_down(x4)
else:
features = None
return features, fused_features, image_features
def forward_layer_block(self, layers, return_layers, features, if_ckpt=False):
"""
Run one forward pass to a block of layers from a TIMM neural network and returns the result.
Advances the whole network by just one block
:param layers: Iterator starting at the current layer block
:param return_layers: TIMM dictionary describing at which intermediate layers features are returned.
:param features: Input features
:return: Processed features
"""
for name, module in layers:
if if_ckpt:
features = checkpoint(module, features)
else:
features = module(features)
if name in return_layers:
break
return features
def fuse_features(self, image_features, lidar_features, layer_idx):
"""
Perform a TransFuser feature fusion block using a Transformer module.
:param image_features: Features from the image branch
:param lidar_features: Features from the LiDAR branch
:param layer_idx: Transformer layer index.
:return: image_features and lidar_features with added features from the other branch.
"""
image_embd_layer = self.avgpool_img(image_features)
lidar_embd_layer = self.avgpool_lidar(lidar_features)
lidar_embd_layer = self.lidar_channel_to_img[layer_idx](lidar_embd_layer)
image_features_layer, lidar_features_layer = self.transformers[layer_idx](
image_embd_layer, lidar_embd_layer
)
lidar_features_layer = self.img_channel_to_lidar[layer_idx](lidar_features_layer)
image_features_layer = F.interpolate(
image_features_layer,
size=(image_features.shape[2], image_features.shape[3]),
mode="bilinear",
align_corners=False,
)
lidar_features_layer = F.interpolate(
lidar_features_layer,
size=(lidar_features.shape[2], lidar_features.shape[3]),
mode="bilinear",
align_corners=False,
)
image_features = image_features + image_features_layer
lidar_features = lidar_features + lidar_features_layer
return image_features, lidar_features
|