File size: 30,584 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
from enum import IntEnum
from typing import Any, Dict, List, Tuple

import cv2
import numpy as np
import numpy.typing as npt
import torch
from nuplan.common.actor_state.ego_state import EgoState
from nuplan.common.actor_state.oriented_box import OrientedBox
from nuplan.common.actor_state.state_representation import StateSE2, TimePoint, StateVector2D
from nuplan.common.actor_state.tracked_objects_types import TrackedObjectType
from nuplan.common.actor_state.vehicle_parameters import get_pacifica_parameters
from nuplan.common.geometry.convert import absolute_to_relative_poses
from nuplan.common.maps.abstract_map import AbstractMap, SemanticMapLayer, MapObject
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from shapely import affinity
from shapely.geometry import Polygon, LineString
from torchvision import transforms

from det_map.data.datasets.lidar_utils import transform_points
from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.vadv2.vadv2_config import Vadv2Config
from navsim.common.dataclasses import AgentInput, Scene, Annotations
from navsim.common.enums import BoundingBoxIndex, LidarIndex
from navsim.evaluate.pdm_score import transform_trajectory, get_trajectory_as_array
from navsim.planning.scenario_builder.navsim_scenario_utils import tracked_object_types
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import StateIndex
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)

class HydraFeatureBuilder(AbstractFeatureBuilder):
    def __init__(self, config: HydraConfig):
        self._config = config

    def get_unique_name(self) -> str:
        """Inherited, see superclass."""
        return "transfuser_feature"

    def compute_features(self, agent_input: AgentInput) -> Dict[str, torch.Tensor]:
        """Inherited, see superclass."""
        features = {}

        features["camera_feature"] = self._get_camera_feature(agent_input)
        if self._config.use_back_view:
            features["camera_feature_back"] = self._get_camera_feature_back(agent_input)

        sensor2lidar_rotation, sensor2lidar_translation, intrinsics = [], [], []

        #agent_input.cameras[-1]
        # camera_timestamp = [agent_input.cameras[-2], agent_input.cameras[-1]]
        camera_timestamp = [agent_input.cameras[-1]]
        for camera in camera_timestamp:
            sensor2lidar_rotation_tmp, sensor2lidar_translation_tmp, intrinsics_tmp = [], [], []
            flag = False
            for cam_k, cam in camera.to_dict().items():
                features[f"intrinsics_{cam_k}"] = cam.intrinsics
                features[f"sensor2lidar_rotation_{cam_k}"] = cam.sensor2lidar_rotation
                features[f"sensor2lidar_translation_{cam_k}"] = cam.sensor2lidar_translation
                if cam.intrinsics is not None and np.any(cam.intrinsics):
                    flag = True
                    features[f"intrinsics_{cam_k}"] = torch.tensor(features[f"intrinsics_{cam_k}"])
                    features[f"sensor2lidar_rotation_{cam_k}"] = torch.tensor(features[f"sensor2lidar_rotation_{cam_k}"])
                    features[f"sensor2lidar_translation_{cam_k}"] = torch.tensor(features[f"sensor2lidar_translation_{cam_k}"])


            sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_l0"])
            sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_f0"])
            sensor2lidar_rotation_tmp.append(features["sensor2lidar_rotation_cam_r0"])


            sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_l0"])
            sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_f0"])
            sensor2lidar_translation_tmp.append(features["sensor2lidar_translation_cam_r0"])


            intrinsics_tmp.append(features["intrinsics_cam_l0"])
            intrinsics_tmp.append(features["intrinsics_cam_f0"])
            intrinsics_tmp.append(features["intrinsics_cam_r0"])

            if flag:
                sensor2lidar_rotation = sensor2lidar_rotation_tmp
                sensor2lidar_translation = sensor2lidar_translation_tmp
                intrinsics = intrinsics_tmp
                # sensor2lidar_rotation.append(torch.stack(sensor2lidar_rotation_tmp))
                # sensor2lidar_translation.append(torch.stack(sensor2lidar_translation_tmp))
                # intrinsics.append(torch.stack(intrinsics_tmp))
            else:
                sensor2lidar_rotation.append(None)
                sensor2lidar_translation.append(None)
                intrinsics.append(None)
        features["sensor2lidar_rotation"] = sensor2lidar_rotation
        features["sensor2lidar_translation"] = sensor2lidar_translation
        features["intrinsics"] = intrinsics


        if self._config.use_pers_bev_embed:
            features["pers_bev"] = self._get_pers_bev(agent_input)

        ego_status_list = []
        for i in range(self._config.num_ego_status):
            # i=0: idx=-1
            # i=1: idx=-2
            # i=2: idx=-3
            # i=3: idx=-4
            idx = - (i + 1)
            ego_status_list += [
                torch.tensor(agent_input.ego_statuses[idx].driving_command, dtype=torch.float32),
                torch.tensor(agent_input.ego_statuses[idx].ego_velocity, dtype=torch.float32),
                torch.tensor(agent_input.ego_statuses[idx].ego_acceleration, dtype=torch.float32),
            ]

        features["status_feature"] = torch.concatenate(
            ego_status_list
        )

        return features

    def _get_camera_feature(self, agent_input: AgentInput) -> torch.Tensor:
        """

        Extract stitched camera from AgentInput

        :param agent_input: input dataclass

        :return: stitched front view image as torch tensor

        """
        # print(len(agent_input.cameras), len(agent_input.timestamps))
        # print(agent_input.cameras[-2], agent_input.cameras[-1])
        # cameras = [agent_input.cameras[-1]

        cameras = agent_input.cameras
        # for i in range(10000):
        #     print(len(cameras))
        image_list = []
        for camera in cameras:
            image = camera.cam_l0.image
            if image is not None and image.size > 0 and np.any(image):
                l0 = camera.cam_l0.image[28:-28, 416:-416]
                f0 = camera.cam_f0.image[28:-28]
                r0 = camera.cam_r0.image[28:-28, 416:-416]
        # Crop to ensure 4:1 aspect ratio
        # l0 = cameras.cam_l0.image[28:-28, 416:-416]
        # f0 = cameras.cam_f0.image[28:-28]
        # r0 = cameras.cam_r0.image[28:-28, 416:-416]

        # stitch l0, f0, r0 images
                stitched_image = np.concatenate([l0, f0, r0], axis=1)
                # assert (self._config.camera_width==)
                # print(self._config.camera_width, self._config.camera_height)
                resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
                tensor_image = transforms.ToTensor()(resized_image)
                # print(tensor_image.shape)
                image_list.append(tensor_image)
            else:
                # if camera.cam_l0.image.all() == None:
                image_list.append(None)

        return image_list

    def _get_camera_feature_back(self, agent_input: AgentInput) -> torch.Tensor:
        cameras = agent_input.cameras[-1]

        # Crop to ensure 4:1 aspect ratio
        l2 = cameras.cam_l2.image[28:-28, 416:-416]
        b0 = cameras.cam_b0.image[28:-28]
        r2 = cameras.cam_r2.image[28:-28, 416:-416]

        # stitch l0, f0, r0 images
        stitched_image = np.concatenate([l2, b0, r2], axis=1)
        resized_image = cv2.resize(stitched_image, (self._config.camera_width, self._config.camera_height))
        tensor_image = transforms.ToTensor()(resized_image)

        return tensor_image

class HydraTargetBuilder(AbstractTargetBuilder):
    def __init__(self, config: HydraConfig):
        self._config = config
        self.v_params = get_pacifica_parameters()
        # lidar_resolution_width = 256
        # lidar_resolution_height = 256
        # self.dense_layers: List[SemanticMapLayer] = [
        #     SemanticMapLayer.DRIVABLE_AREA,
        #     SemanticMapLayer.CROSSWALK
        # ]
        # self.dense_layers_labels = [
        #     1, 2
        # ]

        # self.discrete_layers: List[SemanticMapLayer] = [
        #     SemanticMapLayer.LANE,
        #     SemanticMapLayer.LANE_CONNECTOR,
        # ]

        # self.radius = 32.0
        # self.bev_pixel_width: int = lidar_resolution_width
        # self.bev_pixel_height: int = lidar_resolution_height
        # self.bev_pixel_size: float = 0.25
        # self.bev_semantic_frame = (self.bev_pixel_height, self.bev_pixel_width)
        # self.padding_value = -10000
        # self.sample_dist = 1
        # self.num_samples = 250
        # self.padding = False
        # self.fixed_num = 20

    def get_unique_name(self) -> str:
        """Inherited, see superclass."""
        return "transfuser_target"

    def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
        """Inherited, see superclass."""
        future_traj = scene.get_future_trajectory(
            num_trajectory_frames=self._config.trajectory_sampling.num_poses
        )
        trajectory = torch.tensor(future_traj.poses)
        frame_idx = scene.scene_metadata.num_history_frames - 1
        annotations = scene.frames[frame_idx].annotations
        ego_pose = StateSE2(*scene.frames[frame_idx].ego_status.ego_pose)

        agent_states, agent_labels = self._compute_agent_targets(annotations)
        bev_semantic_map = self._compute_bev_semantic_map(annotations, scene.map_api, ego_pose)

        ego_state = EgoState.build_from_rear_axle(
            StateSE2(*scene.frames[frame_idx].ego_status.ego_pose),
            tire_steering_angle=0.0,
            vehicle_parameters=self.v_params,
            time_point=TimePoint(scene.frames[frame_idx].timestamp),
            rear_axle_velocity_2d=StateVector2D(
                *scene.frames[frame_idx].ego_status.ego_velocity
            ),
            rear_axle_acceleration_2d=StateVector2D(
                *scene.frames[frame_idx].ego_status.ego_acceleration
            ),
        )
        trans_traj = transform_trajectory(
            future_traj, ego_state
        )
        interpolated_traj = get_trajectory_as_array(
            trans_traj,
            TrajectorySampling(num_poses=40, interval_length=0.1),
            ego_state.time_point
        )
        rel_poses = absolute_to_relative_poses([StateSE2(*tmp) for tmp in
                                                interpolated_traj[:, StateIndex.STATE_SE2]])
        # skip the curr frame
        final_traj = [pose.serialize() for pose in rel_poses[1:]]
        final_traj = torch.tensor(final_traj)


        #TODO:map
        # map_api = scene.map_api
        # ego_statuses = [frame.ego_status for frame in scene.frames]
        # ego2globals = [frame.ego2global for frame in scene.frames]
        # # Last one is the current frame
        # ego_status_curr = StateSE2(*ego_statuses[-1].ego_pose)

        # # dense
        # # dense_semantic_map = np.zeros(self.bev_semantic_frame, dtype=np.int64)
        # # for layer, label in zip(self.dense_layers, self.dense_layers_labels):
        # #     entity_mask = self._compute_map_polygon_mask(map_api, ego_status_curr, [layer])
        # #     dense_semantic_map[entity_mask] = label

        # # discrete
        # # centerline_list
        # map_dict = {'centerline': []}
        # line_strings, incoming_line_strings, outcoming_line_strings = self._compute_map_linestrings(map_api,
        #                                                                                             ego_status_curr,
        #                                                                                             list(
        #                                                                                                 self.discrete_layers))
        # centerline_list = self.union_centerline(line_strings, incoming_line_strings, outcoming_line_strings)
        # for instance in centerline_list:
        #     map_dict['centerline'].append(np.array(instance.coords))

        # vectors = []
        # gt_labels = []
        # gt_instance = []
        # instance_list = map_dict['centerline']
        # for instance in instance_list:
        #     vectors.append(LineString(np.array(instance)))
        # for instance in vectors:
        #     gt_instance.append(instance)
        #     gt_labels.append(0)
        #     gt_semantic_mask = None
        #     gt_pv_semantic_mask = None
        # gt_instance = LiDARInstanceLines(gt_instance, self.sample_dist, self.num_samples,
        #                                  self.padding, self.fixed_num, self.padding_value, patch_size=self.radius * 2)
        return {
            #"gt_depth":?????????????
            # "gt_bboxes_3d": gt_instance,
            # "gt_labels_3d": gt_labels,
            "trajectory": trajectory,
            "agent_states": agent_states,
            "agent_labels": agent_labels,
            "bev_semantic_map": bev_semantic_map,
            "interpolated_traj": final_traj
        }

    def _compute_agent_targets(self, annotations: Annotations) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Extracts 2D agent bounding boxes in ego coordinates

        :param annotations: annotation dataclass

        :return: tuple of bounding box values and labels (binary)

        """

        max_agents = self._config.num_bounding_boxes
        agent_states_list: List[npt.NDArray[np.float32]] = []

        def _xy_in_lidar(x: float, y: float, config: Vadv2Config) -> bool:
            return (config.lidar_min_x <= x <= config.lidar_max_x) and (
                    config.lidar_min_y <= y <= config.lidar_max_y
            )

        for box, name in zip(annotations.boxes, annotations.names):
            box_x, box_y, box_heading, box_length, box_width = (
                box[BoundingBoxIndex.X],
                box[BoundingBoxIndex.Y],
                box[BoundingBoxIndex.HEADING],
                box[BoundingBoxIndex.LENGTH],
                box[BoundingBoxIndex.WIDTH],
            )

            if name == "vehicle" and _xy_in_lidar(box_x, box_y, self._config):
                agent_states_list.append(
                    np.array([box_x, box_y, box_heading, box_length, box_width], dtype=np.float32)
                )

        agents_states_arr = np.array(agent_states_list)

        # filter num_instances nearest
        agent_states = np.zeros((max_agents, BoundingBox2DIndex.size()), dtype=np.float32)
        agent_labels = np.zeros(max_agents, dtype=bool)

        if len(agents_states_arr) > 0:
            distances = np.linalg.norm(agents_states_arr[..., BoundingBox2DIndex.POINT], axis=-1)
            argsort = np.argsort(distances)[:max_agents]

            # filter detections
            agents_states_arr = agents_states_arr[argsort]
            agent_states[: len(agents_states_arr)] = agents_states_arr
            agent_labels[: len(agents_states_arr)] = True

        return torch.tensor(agent_states), torch.tensor(agent_labels)

    def _compute_bev_semantic_map(

            self, annotations: Annotations, map_api: AbstractMap, ego_pose: StateSE2

    ) -> torch.Tensor:
        """

        Creates sematic map in BEV

        :param annotations: annotation dataclass

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :return: 2D torch tensor of semantic labels

        """

        bev_semantic_map = np.zeros(self._config.bev_semantic_frame, dtype=np.int64)
        for label, (entity_type, layers) in self._config.bev_semantic_classes.items():
            if entity_type == "polygon":
                entity_mask = self._compute_map_polygon_mask(map_api, ego_pose, layers)
            elif entity_type == "linestring":
                entity_mask = self._compute_map_linestring_mask(map_api, ego_pose, layers)
            else:
                entity_mask = self._compute_box_mask(annotations, layers)
            bev_semantic_map[entity_mask] = label

        return torch.Tensor(bev_semantic_map)

    def _geometry_local_coords(self, geometry: Any, origin: StateSE2) -> Any:
        """

        Transform shapely geometry in local coordinates of origin.

        :param geometry: shapely geometry

        :param origin: pose dataclass

        :return: shapely geometry

        """

        a = np.cos(origin.heading)
        b = np.sin(origin.heading)
        d = -np.sin(origin.heading)
        e = np.cos(origin.heading)
        xoff = -origin.x
        yoff = -origin.y

        translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
        rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])

        return rotated_geometry

    def _coords_to_pixel(self, coords):
        """

        Transform local coordinates in pixel indices of BEV map

        :param coords: _description_

        :return: _description_

        """

        # NOTE: remove half in backward direction
        pixel_center = np.array([[0, self.bev_pixel_width / 2.0]])
        coords_idcs = (coords / self.bev_pixel_size) + pixel_center

        return coords_idcs.astype(np.int32)

    def _compute_map_linestrings(

            self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary of linestring given a map layer class

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: binary mask as numpy array

        """
        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self.radius, layers=layers
        )
        something = []
        incoming_something = []
        outcoming_something = []
        for layer in layers:
            for map_object in map_object_dict[layer]:
                linestring: LineString = self._geometry_local_coords(
                    map_object.baseline_path.linestring, ego_pose
                )
                something.append(linestring)
                for incoming_edge in map_object.incoming_edges:
                    incomingstring: LineString = self._geometry_local_coords(
                        incoming_edge.baseline_path.linestring, ego_pose
                    )
                    incoming_something.append(incomingstring)

                for outgoing_edge in map_object.outgoing_edges:
                    outcomingstring: LineString = self._geometry_local_coords(
                        outgoing_edge.baseline_path.linestring, ego_pose
                    )
                    outcoming_something.append(outcomingstring)
                # todo
                points = np.array(linestring.coords).reshape((-1, 1, 2))

        return something, incoming_something, outcoming_something

    def union_centerline(self, centerline_list, incoming_list, outcoming_list):
        pts_G = nx.DiGraph()
        junction_pts_list = []
        start_pt = np.array(centerline_list[0].coords).round(3)[0]
        end_pt = np.array(centerline_list[-1].coords).round(3)[-1]
        for centerline_geom in centerline_list:
            centerline_pts = np.array(centerline_geom.coords).round(3)
            start_pt = centerline_pts[0]
            end_pt = centerline_pts[-1]
            for idx, pts in enumerate(centerline_pts[:-1]):
                pts_G.add_edge(tuple(centerline_pts[idx]), tuple(centerline_pts[idx + 1]))

        valid_incoming_num = 0
        for pred_geom in incoming_list:
            valid_incoming_num += 1
            pred_pt = np.array(pred_geom.coords).round(3)[-1]
            pts_G.add_edge(tuple(pred_pt), tuple(start_pt))

        valid_outgoing_num = 0
        for succ_geom in outcoming_list:
            valid_outgoing_num += 1
            succ_pt = np.array(succ_geom.coords).round(3)[0]
            pts_G.add_edge(tuple(end_pt), tuple(succ_pt))

        roots = (v for v, d in pts_G.in_degree() if d == 0)
        leaves = [v for v, d in pts_G.out_degree() if d == 0]
        all_paths = []
        for root in roots:
            paths = nx.all_simple_paths(pts_G, root, leaves)
            all_paths.extend(paths)
        final_centerline_paths = []
        for path in all_paths:
            merged_line = LineString(path)
            merged_line = merged_line.simplify(0.2, preserve_topology=True)
            final_centerline_paths.append(merged_line)
        return final_centerline_paths

    # def compute_targets(self, scene: Scene) -> Dict[str, torch.Tensor]:
    #     map_api = scene.map_api
    #     ego_statuses = [frame.ego_status for frame in scene.frames]
    #     ego2globals = [frame.ego2global for frame in scene.frames]
    #     # Last one is the current frame
    #     ego_status_curr = StateSE2(*ego_statuses[-1].ego_pose)
    #
    #     # dense
    #     # dense_semantic_map = np.zeros(self.bev_semantic_frame, dtype=np.int64)
    #     # for layer, label in zip(self.dense_layers, self.dense_layers_labels):
    #     #     entity_mask = self._compute_map_polygon_mask(map_api, ego_status_curr, [layer])
    #     #     dense_semantic_map[entity_mask] = label
    #
    #     # discrete
    #     # centerline_list
    #     map_dict = {'centerline': []}
    #     line_strings, incoming_line_strings, outcoming_line_strings = self._compute_map_linestrings(map_api,
    #                                                                                                 ego_status_curr,
    #                                                                                                 list(
    #                                                                                                     self.discrete_layers))
    #     centerline_list = self.union_centerline(line_strings, incoming_line_strings, outcoming_line_strings)
    #     for instance in centerline_list:
    #         map_dict['centerline'].append(np.array(instance.coords))
    #
    #     vectors = []
    #     gt_labels = []
    #     gt_instance = []
    #     instance_list = map_dict['centerline']
    #     for instance in instance_list:
    #         vectors.append(LineString(np.array(instance)))
    #     for instance in vectors:
    #         gt_instance.append(instance)
    #         gt_labels.append(0)
    #         gt_semantic_mask = None
    #         gt_pv_semantic_mask = None
    #     gt_instance = LiDARInstanceLines(gt_instance, self.sample_dist, self.num_samples,
    #                                      self.padding, self.fixed_num, self.padding_value, patch_size=self.radius * 2)
    #
    #     return {"dense_el": None,
    #             "gt_bboxes_3d": gt_instance,
    #             "gt_labels_3d": gt_labels}
    def _compute_map_polygon_mask(

            self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary mask given a map layer class

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: binary mask as numpy array

        """

        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self._config.bev_radius, layers=layers
        )
        map_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for layer in layers:
            for map_object in map_object_dict[layer]:
                polygon: Polygon = self._geometry_local_coords(map_object.polygon, ego_pose)
                exterior = np.array(polygon.exterior.coords).reshape((-1, 1, 2))
                exterior = self._coords_to_pixel(exterior)
                cv2.fillPoly(map_polygon_mask, [exterior], color=255)
        # OpenCV has origin on top-left corner
        map_polygon_mask = np.rot90(map_polygon_mask)[::-1]
        return map_polygon_mask > 0

    def _compute_map_linestring_mask(

            self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary of linestring given a map layer class

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: binary mask as numpy array

        """
        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self._config.bev_radius, layers=layers
        )
        map_linestring_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for layer in layers:
            for map_object in map_object_dict[layer]:
                linestring: LineString = self._geometry_local_coords(
                    map_object.baseline_path.linestring, ego_pose
                )
                points = np.array(linestring.coords).reshape((-1, 1, 2))
                points = self._coords_to_pixel(points)
                cv2.polylines(map_linestring_mask, [points], isClosed=False, color=255, thickness=2)
        # OpenCV has origin on top-left corner
        map_linestring_mask = np.rot90(map_linestring_mask)[::-1]
        return map_linestring_mask > 0

    def _compute_box_mask(

            self, annotations: Annotations, layers: TrackedObjectType

    ) -> npt.NDArray[np.bool_]:
        """

        Compute binary of bounding boxes in BEV space

        :param annotations: annotation dataclass

        :param layers: bounding box labels to include

        :return: binary mask as numpy array

        """
        box_polygon_mask = np.zeros(self._config.bev_semantic_frame[::-1], dtype=np.uint8)
        for name_value, box_value in zip(annotations.names, annotations.boxes):
            agent_type = tracked_object_types[name_value]
            if agent_type in layers:
                # box_value = (x, y, z, length, width, height, yaw) TODO: add intenum
                x, y, heading = box_value[0], box_value[1], box_value[-1]
                box_length, box_width, box_height = box_value[3], box_value[4], box_value[5]
                agent_box = OrientedBox(StateSE2(x, y, heading), box_length, box_width, box_height)
                exterior = np.array(agent_box.geometry.exterior.coords).reshape((-1, 1, 2))
                exterior = self._coords_to_pixel(exterior)
                cv2.fillPoly(box_polygon_mask, [exterior], color=255)
        # OpenCV has origin on top-left corner
        box_polygon_mask = np.rot90(box_polygon_mask)[::-1]
        return box_polygon_mask > 0

    @staticmethod
    def _query_map_objects(

            self, map_api: AbstractMap, ego_pose: StateSE2, layers: List[SemanticMapLayer]

    ) -> List[MapObject]:
        """

        Queries map objects

        :param map_api: map interface of nuPlan

        :param ego_pose: ego pose in global frame

        :param layers: map layers

        :return: list of map objects

        """

        # query map api with interesting layers
        map_object_dict = map_api.get_proximal_map_objects(
            point=ego_pose.point, radius=self, layers=layers
        )
        map_objects: List[MapObject] = []
        for layer in layers:
            map_objects += map_object_dict[layer]
        return map_objects

    @staticmethod
    def _geometry_local_coords(geometry: Any, origin: StateSE2) -> Any:
        """

        Transform shapely geometry in local coordinates of origin.

        :param geometry: shapely geometry

        :param origin: pose dataclass

        :return: shapely geometry

        """

        a = np.cos(origin.heading)
        b = np.sin(origin.heading)
        d = -np.sin(origin.heading)
        e = np.cos(origin.heading)
        xoff = -origin.x
        yoff = -origin.y

        translated_geometry = affinity.affine_transform(geometry, [1, 0, 0, 1, xoff, yoff])
        rotated_geometry = affinity.affine_transform(translated_geometry, [a, b, d, e, 0, 0])

        return rotated_geometry

    def _coords_to_pixel(self, coords):
        """

        Transform local coordinates in pixel indices of BEV map

        :param coords: _description_

        :return: _description_

        """

        # NOTE: remove half in backward direction
        pixel_center = np.array([[0, self._config.bev_pixel_width / 2.0]])
        coords_idcs = (coords / self._config.bev_pixel_size) + pixel_center

        return coords_idcs.astype(np.int32)


class BoundingBox2DIndex(IntEnum):
    _X = 0
    _Y = 1
    _HEADING = 2
    _LENGTH = 3
    _WIDTH = 4

    @classmethod
    def size(cls):
        valid_attributes = [
            attribute
            for attribute in dir(cls)
            if attribute.startswith("_")
               and not attribute.startswith("__")
               and not callable(getattr(cls, attribute))
        ]
        return len(valid_attributes)

    @classmethod
    @property
    def X(cls):
        return cls._X

    @classmethod
    @property
    def Y(cls):
        return cls._Y

    @classmethod
    @property
    def HEADING(cls):
        return cls._HEADING

    @classmethod
    @property
    def LENGTH(cls):
        return cls._LENGTH

    @classmethod
    @property
    def WIDTH(cls):
        return cls._WIDTH

    @classmethod
    @property
    def POINT(cls):
        # assumes X, Y have subsequent indices
        return slice(cls._X, cls._Y + 1)

    @classmethod
    @property
    def STATE_SE2(cls):
        # assumes X, Y, HEADING have subsequent indices
        return slice(cls._X, cls._HEADING + 1)