File size: 5,551 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import pickle
from typing import Any, Union

import numpy as np
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler

from navsim.agents.hydra.hydra_config import HydraConfig
from navsim.agents.hydra.hydra_features import HydraFeatureBuilder, HydraTargetBuilder
from navsim.agents.hydra.hydra_loss_fn import hydra_kd_imi_agent_loss
from navsim.agents.hydra.hydra_model import HydraModel

from navsim.common.dataclasses import SensorConfig
from navsim.planning.training.abstract_feature_target_builder import (
    AbstractFeatureBuilder,
    AbstractTargetBuilder,
)

DEVKIT_ROOT = os.getenv('NAVSIM_DEVKIT_ROOT')
TRAJ_PDM_ROOT = os.getenv('NAVSIM_TRAJPDM_ROOT')

from typing import Dict, List

import pytorch_lightning as pl
import torch
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling

from navsim.agents.abstract_agent import AbstractAgent
from navsim.common.dataclasses import Trajectory


class HydraAgent(AbstractAgent):
    def __init__(
            self,
            config: HydraConfig,
            lr: float,
            checkpoint_path: str = None,
            pdm_split=None,
            metrics=None,
    ):
        super().__init__()
        config.trajectory_pdm_weight = {
            'noc': 3.0,
            'da': 3.0,
            'ttc': 2.0,
            'progress': config.progress_weight,
            'comfort': 1.0,
            'ddc': 1.0,
            'lk': config.progress_weight,
            'tl': 3.0,
        }
        self._config = config
        self._lr = lr
        self.metrics = metrics
        self._checkpoint_path = checkpoint_path
        self.vadv2_model = HydraModel(config)
        self.vocab_size = config.vocab_size
        self.backbone_wd = config.backbone_wd
        new_pkl_dir = f'vocab_score_full_{self.vocab_size}_navtrain'
        self.vocab_pdm_score_full = pickle.load(
            open(f'{TRAJ_PDM_ROOT}/{new_pkl_dir}/{pdm_split}.pkl', 'rb'))
        # todo
        self.vocab_pdm_score_expansion = pickle.load(
            open(f'{xxx}/{xxx}/{xxx}.pkl', 'rb'))

    def name(self) -> str:
        """Inherited, see superclass."""

        return self.__class__.__name__

    def initialize(self) -> None:
        """Inherited, see superclass."""
        state_dict: Dict[str, Any] = torch.load(self._checkpoint_path, map_location=torch.device("cpu"))["state_dict"]
        self.load_state_dict({k.replace("agent.", ""): v for k, v in state_dict.items()})

    def get_sensor_config(self) -> SensorConfig:
        """Inherited, see superclass."""
        return SensorConfig(
            cam_f0=[6],
            cam_l0=[6],
            cam_l1=[6],
            cam_l2=[6],
            cam_r0=[6],
            cam_r1=[6],
            cam_r2=[6],
            cam_b0=[6],
            lidar_pc=[],
        )

    def get_target_builders(self) -> List[AbstractTargetBuilder]:
        return [HydraTargetBuilder(config=self._config)]

    def get_feature_builders(self) -> List[AbstractFeatureBuilder]:
        return [HydraFeatureBuilder(config=self._config)]

    def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        return self.vadv2_model(features)

    def forward_train(self, features, interpolated_traj):
        return self.vadv2_model(features, interpolated_traj)

    def compute_loss(
            self,
            features: Dict[str, torch.Tensor],
            targets: Dict[str, torch.Tensor],
            predictions: Dict[str, torch.Tensor],
            tokens=None
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        # get the pdm score by tokens
        scores = {}
        for k in self.metrics:
            if k == 'tl' or k == 'lk' or k == 'ddc':
                tmp = [self.vocab_pdm_score_expansion[token][k][None] for token in tokens]
                scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0))
                             .to(predictions['trajectory'].device))
            else:
                tmp = [self.vocab_pdm_score_full[token][k][None] for token in tokens]
                scores[k] = (torch.from_numpy(np.concatenate(tmp, axis=0))
                             .to(predictions['trajectory'].device))

        return hydra_kd_imi_agent_loss(targets, predictions, self._config, scores)

    def get_optimizers(self) -> Union[Optimizer, Dict[str, Union[Optimizer, LRScheduler]]]:
        backbone_params_name = '_backbone.image_encoder'
        img_backbone_params = list(
            filter(lambda kv: backbone_params_name in kv[0], self.vadv2_model.named_parameters()))
        default_params = list(filter(lambda kv: backbone_params_name not in kv[0], self.vadv2_model.named_parameters()))
        params_lr_dict = [
            {'params': [tmp[1] for tmp in default_params]},
            {
                'params': [tmp[1] for tmp in img_backbone_params],
                'lr': self._lr * self._config.lr_mult_backbone,
                'weight_decay': self.backbone_wd
            }
        ]
        return torch.optim.Adam(params_lr_dict, lr=self._lr)

    def get_training_callbacks(self) -> List[pl.Callback]:
        return [
            # TransfuserCallback(self._config),
            ModelCheckpoint(
                save_top_k=30,
                monitor="val/loss_epoch",
                mode="min",
                dirpath=f"{os.environ.get('NAVSIM_EXP_ROOT')}/{self._config.ckpt_path}/",
                filename="{epoch:02d}-{step:04d}",
            )
        ]