File size: 39,810 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
import os
from collections import OrderedDict
from mmcv.runner import _load_checkpoint

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
import logging
from functools import partial
from scipy import interpolate
from math import pi
from einops import rearrange, repeat
import warnings
import torch.utils.checkpoint as cp
from mmdet.models.builder import BACKBONES

logger = logging.getLogger(__name__)
BatchNorm2d = torch.nn.BatchNorm2d
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None
try:
    if XFORMERS_ENABLED:
        from xformers.ops import memory_efficient_attention, unbind

        XFORMERS_AVAILABLE = True
        warnings.warn("xFormers is available (Attention)")
    else:
        warnings.warn("xFormers is disabled (Attention)")
        raise ImportError
except ImportError:
    XFORMERS_AVAILABLE = False
    warnings.warn("xFormers is not available (Attention)")

class Conv2d(torch.nn.Conv2d):
    """

    A wrapper around :class:`torch.nn.Conv2d` to support empty inputs and more features.

    """

    def __init__(self, *args, **kwargs):
        """

        Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`:

        Args:

            norm (nn.Module, optional): a normalization layer

            activation (callable(Tensor) -> Tensor): a callable activation function

        It assumes that norm layer is used before activation.

        """
        norm = kwargs.pop("norm", None)
        activation = kwargs.pop("activation", None)
        super().__init__(*args, **kwargs)

        self.norm = norm
        self.activation = activation

    def forward(self, x):
        # torchscript does not support SyncBatchNorm yet
        # https://github.com/pytorch/pytorch/issues/40507
        # and we skip these codes in torchscript since:
        # 1. currently we only support torchscript in evaluation mode
        # 2. features needed by exporting module to torchscript are added in PyTorch 1.6 or
        # later version, `Conv2d` in these PyTorch versions has already supported empty inputs.
        if not torch.jit.is_scripting():
            with warnings.catch_warnings(record=True):
                if x.numel() == 0 and self.training:
                    # https://github.com/pytorch/pytorch/issues/12013
                    assert not isinstance(
                        self.norm, torch.nn.SyncBatchNorm
                    ), "SyncBatchNorm does not support empty inputs!"

        x = F.conv2d(
            x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
        )
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x


def window_partition(x, window_size):
    """

    Partition into non-overlapping windows with padding if needed.

    Args:

        x (tensor): input tokens with [B, H, W, C].

        window_size (int): window size.

    Returns:

        windows: windows after partition with [B * num_windows, window_size, window_size, C].

        (Hp, Wp): padded height and width before partition

    """
    B, H, W, C = x.shape

    pad_h = (window_size - H % window_size) % window_size
    pad_w = (window_size - W % window_size) % window_size
    if pad_h > 0 or pad_w > 0:
        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
    Hp, Wp = H + pad_h, W + pad_w

    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows, (Hp, Wp)


def window_unpartition(windows, window_size, pad_hw, hw):
    """

    Window unpartition into original sequences and removing padding.

    Args:

        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].

        window_size (int): window size.

        pad_hw (Tuple): padded height and width (Hp, Wp).

        hw (Tuple): original height and width (H, W) before padding.

    Returns:

        x: unpartitioned sequences with [B, H, W, C].

    """
    Hp, Wp = pad_hw
    H, W = hw
    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
    x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)

    if Hp > H or Wp > W:
        x = x[:, :H, :W, :].contiguous()
    return x


def get_rel_pos(q_size, k_size, rel_pos):
    """

    Get relative positional embeddings according to the relative positions of

        query and key sizes.

    Args:

        q_size (int): size of query q.

        k_size (int): size of key k.

        rel_pos (Tensor): relative position embeddings (L, C).

    Returns:

        Extracted positional embeddings according to relative positions.

    """
    max_rel_dist = int(2 * max(q_size, k_size) - 1)
    use_log_interpolation = True

    # Interpolate rel pos if needed.
    if rel_pos.shape[0] != max_rel_dist:
        if not use_log_interpolation:
            # Interpolate rel pos.
            rel_pos_resized = F.interpolate(
                rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
                size=max_rel_dist,
                mode="linear",
            )
            rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
        else:
            src_size = rel_pos.shape[0]
            dst_size = max_rel_dist

            # q = 1.13492
            q = 1.0903078
            dis = []

            cur = 1
            for i in range(src_size // 2):
                dis.append(cur)
                cur += q ** (i + 1)

            r_ids = [-_ for _ in reversed(dis)]
            x = r_ids + [0] + dis
            t = dst_size // 2.0
            dx = np.arange(-t, t + 0.1, 1.0)
            # print("x = %s" % str(x))
            # print("dx = %s" % str(dx))
            all_rel_pos_bias = []
            for i in range(rel_pos.shape[1]):
                z = rel_pos[:, i].view(src_size).cpu().float().numpy()
                f = interpolate.interp1d(x, z, kind='cubic', fill_value="extrapolate")
                all_rel_pos_bias.append(
                    torch.Tensor(f(dx)).contiguous().view(-1, 1).to(rel_pos.device))
            rel_pos_resized = torch.cat(all_rel_pos_bias, dim=-1)
    else:
        rel_pos_resized = rel_pos

    # Scale the coords with short length if shapes for q and k are different.
    q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
    k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
    relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)

    return rel_pos_resized[relative_coords.long()]


def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size):
    """

    Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.

    https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py   # noqa B950

    Args:

        attn (Tensor): attention map.

        q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).

        rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.

        rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.

        q_size (Tuple): spatial sequence size of query q with (q_h, q_w).

        k_size (Tuple): spatial sequence size of key k with (k_h, k_w).

    Returns:

        attn (Tensor): attention map with added relative positional embeddings.

    """
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h)
    Rw = get_rel_pos(q_w, k_w, rel_pos_w)

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)

    attn = (
            attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn


def get_abs_pos(abs_pos, has_cls_token, hw):
    """

    Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token

        dimension for the original embeddings.

    Args:

        abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).

        has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.

        hw (Tuple): size of input image tokens.

    Returns:

        Absolute positional embeddings after processing with shape (1, H, W, C)

    """
    h, w = hw
    if has_cls_token:
        abs_pos = abs_pos[:, 1:]
    xy_num = abs_pos.shape[1]
    size = int(math.sqrt(xy_num))
    assert size * size == xy_num

    if size != h or size != w:
        original_datatype = abs_pos.dtype
        new_abs_pos = F.interpolate(
            abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2).float(),  # bf16 is not implemented
            size=(h, w),
            mode="bicubic",
            align_corners=False,
        ).to(original_datatype)

        return new_abs_pos.permute(0, 2, 3, 1)
    else:
        return abs_pos.reshape(1, h, w, -1)


class PatchEmbed(nn.Module):
    """

    Image to Patch Embedding.

    """

    def __init__(

            self, kernel_size=(16, 16), stride=(16, 16), padding=(0, 0), in_chans=3, embed_dim=768

    ):
        """

        Args:

            kernel_size (Tuple): kernel size of the projection layer.

            stride (Tuple): stride of the projection layer.

            padding (Tuple): padding size of the projection layer.

            in_chans (int): Number of input image channels.

            embed_dim (int):  embed_dim (int): Patch embedding dimension.

        """
        super().__init__()

        self.proj = nn.Conv2d(
            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
        )

    def forward(self, x):
        x = self.proj(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        return x


def broadcat(tensors, dim=-1):
    num_tensors = len(tensors)
    shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
    assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
    shape_len = list(shape_lens)[0]
    dim = (dim + shape_len) if dim < 0 else dim
    dims = list(zip(*map(lambda t: list(t.shape), tensors)))
    expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
    assert all(
        [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
    max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
    expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
    expanded_dims.insert(dim, (dim, dims[dim]))
    expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
    tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
    return torch.cat(tensors, dim=dim)


def rotate_half(x):
    x = rearrange(x, '... (d r) -> ... d r', r=2)
    x1, x2 = x.unbind(dim=-1)
    x = torch.stack((-x2, x1), dim=-1)
    return rearrange(x, '... d r -> ... (d r)')


class VisionRotaryEmbedding(nn.Module):
    def __init__(

            self,

            dim,

            pt_seq_len,

            ft_seq_len=None,

            custom_freqs=None,

            freqs_for='lang',

            theta=10000,

            max_freq=10,

            num_freqs=1,

    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs_h = torch.einsum('..., f -> ... f', t, freqs)
        freqs_h = repeat(freqs_h, '... n -> ... (n r)', r=2)

        freqs_w = torch.einsum('..., f -> ... f', t, freqs)
        freqs_w = repeat(freqs_w, '... n -> ... (n r)', r=2)

        freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)

        self.register_buffer("freqs_cos", freqs.cos())
        self.register_buffer("freqs_sin", freqs.sin())

        print('======== shape of rope freq', self.freqs_cos.shape, '========')

    def forward(self, t, start_index=0):
        rot_dim = self.freqs_cos.shape[-1]
        end_index = start_index + rot_dim
        assert rot_dim <= t.shape[
            -1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
        t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
        t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
        return torch.cat((t_left, t, t_right), dim=-1)


class VisionRotaryEmbeddingFast(nn.Module):
    def __init__(

            self,

            dim,

            pt_seq_len=16,

            ft_seq_len=None,

            custom_freqs=None,

            freqs_for='lang',

            theta=10000,

            max_freq=10,

            num_freqs=1,

    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs = torch.einsum('..., f -> ... f', t, freqs)
        freqs = repeat(freqs, '... n -> ... (n r)', r=2)
        freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1)

        freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
        freqs_sin = freqs.sin().view(-1, freqs.shape[-1])

        self.register_buffer("freqs_cos", freqs_cos)
        self.register_buffer("freqs_sin", freqs_sin)

        print('======== shape of rope freq', self.freqs_cos.shape, '========')

    def forward(self, t):
        return t * self.freqs_cos + rotate_half(t) * self.freqs_sin


class FrozenBatchNorm2d(nn.Module):
    """

    BatchNorm2d where the batch statistics and the affine parameters are fixed.

    It contains non-trainable buffers called

    "weight" and "bias", "running_mean", "running_var",

    initialized to perform identity transformation.

    The pre-trained backbone models from Caffe2 only contain "weight" and "bias",

    which are computed from the original four parameters of BN.

    The affine transform `x * weight + bias` will perform the equivalent

    computation of `(x - running_mean) / sqrt(running_var) * weight + bias`.

    When loading a backbone model from Caffe2, "running_mean" and "running_var"

    will be left unchanged as identity transformation.

    Other pre-trained backbone models may contain all 4 parameters.

    The forward is implemented by `F.batch_norm(..., training=False)`.

    """

    _version = 3

    def __init__(self, num_features, eps=1e-5):
        super().__init__()
        self.num_features = num_features
        self.eps = eps
        self.register_buffer("weight", torch.ones(num_features))
        self.register_buffer("bias", torch.zeros(num_features))
        self.register_buffer("running_mean", torch.zeros(num_features))
        self.register_buffer("running_var", torch.ones(num_features) - eps)

    def forward(self, x):
        if x.requires_grad:
            # When gradients are needed, F.batch_norm will use extra memory
            # because its backward op computes gradients for weight/bias as well.
            scale = self.weight * (self.running_var + self.eps).rsqrt()
            bias = self.bias - self.running_mean * scale
            scale = scale.reshape(1, -1, 1, 1)
            bias = bias.reshape(1, -1, 1, 1)
            out_dtype = x.dtype  # may be half
            return x * scale.to(out_dtype) + bias.to(out_dtype)
        else:
            # When gradients are not needed, F.batch_norm is a single fused op
            # and provide more optimization opportunities.
            return F.batch_norm(
                x,
                self.running_mean,
                self.running_var,
                self.weight,
                self.bias,
                training=False,
                eps=self.eps,
            )

    def _load_from_state_dict(

            self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs

    ):
        version = local_metadata.get("version", None)

        if version is None or version < 2:
            # No running_mean/var in early versions
            # This will silent the warnings
            if prefix + "running_mean" not in state_dict:
                state_dict[prefix + "running_mean"] = torch.zeros_like(self.running_mean)
            if prefix + "running_var" not in state_dict:
                state_dict[prefix + "running_var"] = torch.ones_like(self.running_var)

        super()._load_from_state_dict(
            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
        )

    def __repr__(self):
        return "FrozenBatchNorm2d(num_features={}, eps={})".format(self.num_features, self.eps)

    @classmethod
    def convert_frozen_batchnorm(cls, module):
        """

        Convert all BatchNorm/SyncBatchNorm in module into FrozenBatchNorm.

        Args:

            module (torch.nn.Module):

        Returns:

            If module is BatchNorm/SyncBatchNorm, returns a new module.

            Otherwise, in-place convert module and return it.

        Similar to convert_sync_batchnorm in

        https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py

        """
        bn_module = nn.modules.batchnorm
        bn_module = (bn_module.BatchNorm2d, bn_module.SyncBatchNorm)
        res = module
        if isinstance(module, bn_module):
            res = cls(module.num_features)
            if module.affine:
                res.weight.data = module.weight.data.clone().detach()
                res.bias.data = module.bias.data.clone().detach()
            res.running_mean.data = module.running_mean.data
            res.running_var.data = module.running_var.data
            res.eps = module.eps
        else:
            for name, child in module.named_children():
                new_child = cls.convert_frozen_batchnorm(child)
                if new_child is not child:
                    res.add_module(name, new_child)
        return res


class LayerNorm(nn.Module):
    """

    A LayerNorm variant, popularized by Transformers, that performs point-wise mean and

    variance normalization over the channel dimension for inputs that have shape

    (batch_size, channels, height, width).

    https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa B950

    """

    def __init__(self, normalized_shape, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class CNNBlockBase(nn.Module):
    """

    A CNN block is assumed to have input channels, output channels and a stride.

    The input and output of `forward()` method must be NCHW tensors.

    The method can perform arbitrary computation but must match the given

    channels and stride specification.

    Attribute:

        in_channels (int):

        out_channels (int):

        stride (int):

    """

    def __init__(self, in_channels, out_channels, stride):
        """

        The `__init__` method of any subclass should also contain these arguments.

        Args:

            in_channels (int):

            out_channels (int):

            stride (int):

        """
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.stride = stride

    def freeze(self):
        """

        Make this block not trainable.

        This method sets all parameters to `requires_grad=False`,

        and convert all BatchNorm layers to FrozenBatchNorm

        Returns:

            the block itself

        """
        for p in self.parameters():
            p.requires_grad = False
        FrozenBatchNorm2d.convert_frozen_batchnorm(self)
        return self


def get_norm(norm, out_channels):
    """

    Args:

        norm (str or callable): either one of BN, SyncBN, FrozenBN, GN;

            or a callable that takes a channel number and returns

            the normalization layer as a nn.Module.

    Returns:

        nn.Module or None: the normalization layer

    """
    if norm is None:
        return None
    if isinstance(norm, str):
        if len(norm) == 0:
            return None
        norm = {
            "BN": BatchNorm2d,
            # Fixed in https://github.com/pytorch/pytorch/pull/36382
            "SyncBN": nn.SyncBatchNorm,
            "FrozenBN": FrozenBatchNorm2d,
            "GN": lambda channels: nn.GroupNorm(32, channels),
            # for debugging:
            "nnSyncBN": nn.SyncBatchNorm,
            "LN": lambda channels: LayerNorm(channels)
        }[norm]
    return norm(out_channels)


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).

    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        if self.drop_prob == 0. or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
        random_tensor = keep_prob + \
                        torch.rand(shape, dtype=x.dtype, device=x.device)
        random_tensor.floor_()  # binarize
        output = x.div(keep_prob) * random_tensor
        return output


class SwiGLU(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,

                 norm_layer=nn.LayerNorm, subln=False

                 ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.w1 = nn.Linear(in_features, hidden_features)
        self.w2 = nn.Linear(in_features, hidden_features)

        self.act = act_layer()
        self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
        self.w3 = nn.Linear(hidden_features, out_features)

        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x1 = self.w1(x)
        x2 = self.w2(x)
        hidden = self.act(x1) * x2
        x = self.ffn_ln(hidden)
        x = self.w3(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(

            self,

            dim,

            num_heads=8,

            qkv_bias=True,

            qk_scale=None,

            attn_head_dim=None,

            norm_layer=nn.LayerNorm,

            rope=None,

            flash_attn=True,

            xformers_attn=True,

            subln=False

    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.subln = subln
        self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
        self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
        self.v_proj = nn.Linear(dim, all_head_dim, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.rope = rope
        # self.flash_attn = flash_attn
        self.proj = nn.Linear(all_head_dim, dim)
        self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
        self.xformers_attn = xformers_attn
        # if self.flash_attn:
        #     factory_kwargs = {'device': 'cuda', 'dtype': torch.float16}
        #     self.inner_attn = FlashAttention(attention_dropout=0.0, **factory_kwargs)

    def forward(self, x):
        B, H, W, C = x.shape
        x = x.view(B, -1, C)
        N = H * W

        q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
        k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
        v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)

        q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)  # B, num_heads, N, C
        k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
        v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)

        ## rope
        q = self.rope(q).type_as(v)
        k = self.rope(k).type_as(v)

        if self.xformers_attn:
            q = q.permute(0, 2, 1, 3)  # B, num_heads, N, C -> B, N, num_heads, C
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)

            # kv = torch.stack([k, v], dim=2)
            # x, attn_weights = self.inner_attn(q, kv, key_padding_mask=None, causal=False)
            x = memory_efficient_attention(q, k, v)
            x = x.reshape(B, N, -1)
            x = self.inner_attn_ln(x)
        else:
            q = q * self.scale
            attn = (q @ k.transpose(-2, -1))
            attn = attn.softmax(dim=-1).type_as(x)
            x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
            x = self.inner_attn_ln(x)

        x = self.proj(x)
        x = x.view(B, H, W, C)

        return x


class ResBottleneckBlock(CNNBlockBase):
    """

    The standard bottleneck residual block without the last activation layer.

    It contains 3 conv layers with kernels 1x1, 3x3, 1x1.

    """

    def __init__(

            self,

            in_channels,

            out_channels,

            bottleneck_channels,

            norm="LN",

            act_layer=nn.GELU,

    ):
        """

        Args:

            in_channels (int): Number of input channels.

            out_channels (int): Number of output channels.

            bottleneck_channels (int): number of output channels for the 3x3

                "bottleneck" conv layers.

            norm (str or callable): normalization for all conv layers.

                See :func:`layers.get_norm` for supported format.

            act_layer (callable): activation for all conv layers.

        """
        super().__init__(in_channels, out_channels, 1)

        self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False)
        self.norm1 = get_norm(norm, bottleneck_channels)
        self.act1 = act_layer()

        self.conv2 = Conv2d(
            bottleneck_channels,
            bottleneck_channels,
            3,
            padding=1,
            bias=False,
        )
        self.norm2 = get_norm(norm, bottleneck_channels)
        self.act2 = act_layer()

        self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False)
        self.norm3 = get_norm(norm, out_channels)

        for layer in [self.norm1, self.norm2]:
            layer.weight.data.fill_(1.0)
            layer.bias.data.zero_()
        # zero init last norm layer.
        self.norm3.weight.data.zero_()
        self.norm3.bias.data.zero_()

    def forward(self, x):
        out = x
        for layer in self.children():
            out = layer(out)

        out = x + out
        return out


class Block(nn.Module):
    """Transformer blocks with support of window attention and residual propagation blocks"""

    def __init__(

            self,

            dim,

            num_heads,

            mlp_ratio=4 * 2 / 3,

            qkv_bias=True,

            drop_path=0.0,

            norm_layer=partial(nn.LayerNorm, eps=1e-6),

            window_size=0,

            use_residual_block=False,

            rope=None,

            flash_attn=False,

            xformers_attn=True,

            subln=False,

            with_cp=True,

    ):
        """

        Args:

            dim (int): Number of input channels.

            num_heads (int): Number of attention heads in each ViT block.

            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

            qkv_bias (bool): If True, add a learnable bias to query, key, value.

            drop_path (float): Stochastic depth rate.

            norm_layer (nn.Module): Normalization layer.

            act_layer (nn.Module): Activation layer.

            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.

            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.

            window_size (int): Window size for window attention blocks. If it equals 0, then not

                use window attention.

            use_residual_block (bool): If True, use a residual block after the MLP block.

            input_size (int or None): Input resolution for calculating the relative positional

                parameter size.

        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            rope=rope,
            flash_attn=flash_attn,
            xformers_attn=xformers_attn,
            subln=subln
        )

        self.with_cp = with_cp
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        self.mlp = SwiGLU(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            subln=True,
            norm_layer=norm_layer,
        )

        self.window_size = window_size

        self.use_residual_block = use_residual_block
        if use_residual_block:
            # Use a residual block with bottleneck channel as dim // 2
            self.residual = ResBottleneckBlock(
                in_channels=dim,
                out_channels=dim,
                bottleneck_channels=dim // 2,
                norm="LN",
            )

    def _forward(self, x):
        shortcut = x
        x = self.norm1(x)

        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        x = self.attn(x)

        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        if self.use_residual_block:
            x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)

        return x

    def forward(self, x):
        if self.with_cp and self.training:
            x = cp.checkpoint(self._forward, x)
        else:
            x = self._forward(x)
        return x


@BACKBONES.register_module()
class EVAViT(nn.Module):
    """

    This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`.

    "Exploring Plain Vision Transformer Backbones for Object Detection",

    https://arxiv.org/abs/2203.16527

    """

    def __init__(

            self,

            img_size=1024,

            patch_size=16,

            in_chans=3,

            embed_dim=768,

            depth=12,

            num_heads=12,

            mlp_ratio=4 * 2 / 3,

            qkv_bias=True,

            drop_path_rate=0.0,

            norm_layer=partial(nn.LayerNorm, eps=1e-6),

            use_abs_pos=True,

            pt_hw_seq_len=16,

            intp_freq=True,

            window_size=0,

            global_window_size=0,

            window_block_indexes=(),

            residual_block_indexes=(),

            pretrain_img_size=224,

            pretrain_use_cls_token=True,

            out_feature="last_feat",

            subln=False,

            flash_attn=False,

            xformers_attn=True,

            with_cp=True,

            frozen=False,

    ):
        """

        Args:

            img_size (int): Input image size.

            patch_size (int): Patch size.

            in_chans (int): Number of input image channels.

            embed_dim (int): Patch embedding dimension.

            depth (int): Depth of ViT.

            num_heads (int): Number of attention heads in each ViT block.

            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.

            qkv_bias (bool): If True, add a learnable bias to query, key, value.

            drop_path_rate (float): Stochastic depth rate.

            norm_layer (nn.Module): Normalization layer.

            act_layer (nn.Module): Activation layer.

            use_abs_pos (bool): If True, use absolute positional embeddings.

            use_rel_pos (bool): If True, add relative positional embeddings to the attention map.

            rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.

            window_size (int): Window size for window attention blocks.

            window_block_indexes (list): Indexes for blocks using window attention.

            residual_block_indexes (list): Indexes for blocks using conv propagation.

            use_act_checkpoint (bool): If True, use activation checkpointing.

            pretrain_img_size (int): input image size for pretraining models.

            pretrain_use_cls_token (bool): If True, pretrainig models use class token.

            out_feature (str): name of the feature from the last block.

        """
        super().__init__()
        self.pretrain_use_cls_token = pretrain_use_cls_token
        self.patch_embed = PatchEmbed(
            kernel_size=(patch_size, patch_size),
            stride=(patch_size, patch_size),
            in_chans=in_chans,
            embed_dim=embed_dim,
        )
        self.frozen = frozen

        if use_abs_pos:
            # Initialize absolute positional embedding with pretrain image size.
            num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size)
            num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
            self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
        else:
            self.pos_embed = None

        half_head_dim = embed_dim // num_heads // 2
        hw_seq_len = img_size // patch_size

        self.rope_win = VisionRotaryEmbeddingFast(
            dim=half_head_dim,
            pt_seq_len=pt_hw_seq_len,
            ft_seq_len=window_size if intp_freq else None,
        )
        self.rope_glb = VisionRotaryEmbeddingFast(
            dim=half_head_dim,
            pt_seq_len=pt_hw_seq_len,
            ft_seq_len=hw_seq_len if intp_freq else None,
        )

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]

        self.blocks = nn.ModuleList()
        for i in range(depth):
            block = Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                window_size=window_size if i in window_block_indexes else global_window_size,
                use_residual_block=i in residual_block_indexes,
                rope=self.rope_win if i in window_block_indexes else self.rope_glb,
                flash_attn=flash_attn,
                xformers_attn=xformers_attn,
                subln=subln,
                with_cp=with_cp,
            )

            self.blocks.append(block)

        self._out_feature_channels = {out_feature: embed_dim}
        self._out_feature_strides = {out_feature: patch_size}
        self._out_features = [out_feature]

        self.adapter = None

        if self.pos_embed is not None:
            nn.init.normal_(self.pos_embed, std=0.02)

        # MIN SHI: I disable the weight initialization since they will be automatically loaded
        # **However, they will cause problems (deepspeed + bf16)**
        # self.apply(self._init_weights)
        self._freeze_stages()

    def _freeze_stages(self):
        if self.frozen:
            self.eval()
            for m in self.parameters():
                m.requires_grad = False

    def init_weights(self, ckpt_path):
        ckpt = _load_checkpoint(ckpt_path,
                                logger=logger,
                                map_location='cpu')
        if 'state_dict' in ckpt:
            _state_dict = ckpt['state_dict']
        elif 'model' in ckpt:
            _state_dict = ckpt['model']
        else:
            _state_dict = ckpt

        state_dict = OrderedDict()
        rope_keys = []
        for k, v in _state_dict.items():
            if 'rope' in k:
                rope_keys.append(k[13:])
            if k.startswith('backbone.'):
                state_dict[k[9:]] = v
            elif k.startswith('img_backbone.'):
                state_dict[k[13:]] = v
            else:
                state_dict[k] = v
        print(f'Before deleting rope keys, {len(state_dict)}')
        for rope_k in rope_keys:
            del state_dict[rope_k]
        print(f'After deleting rope keys, {len(state_dict)}')

        # strip prefix of state_dict
        if list(state_dict.keys())[0].startswith('module.'):
            state_dict = {k[7:]: v for k, v in state_dict.items()}

        # load state_dict
        meg = self.load_state_dict(state_dict, False)
        print(meg)

    def forward(self, x,):
        x = self.patch_embed(x)
        if self.pos_embed is not None:
            x = x + get_abs_pos(
                self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
            )

        for blk in self.blocks:
            x = blk(x)  # b, h, w, c
        x = x.permute(0, 3, 1, 2)  # b, c, h, w
        # print(x.shape)
        return [x, ]