ljw20180420 commited on
Commit
d5e2d6b
·
verified ·
1 Parent(s): 7ec5be4

Upload folder using huggingface_hub

Browse files
ins_model/README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - crispr_data
7
+ model-index:
8
+ - name: SX_spymac_Lindel_ins
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # SX_spymac_Lindel_ins
16
+
17
+ This model is a fine-tuned version of [](https://huggingface.co/) on the crispr_data dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 119.2468
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.001
39
+ - train_batch_size: 100
40
+ - eval_batch_size: 100
41
+ - seed: 63036
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_ratio: 0.05
45
+ - num_epochs: 30.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 2556.3674 | 1.0 | 327 | 2267.2915 |
52
+ | 1854.776 | 2.0 | 654 | 1407.0547 |
53
+ | 1097.5239 | 3.0 | 981 | 812.6055 |
54
+ | 630.9811 | 4.0 | 1308 | 467.9777 |
55
+ | 370.5749 | 5.0 | 1635 | 283.4810 |
56
+ | 236.7095 | 6.0 | 1962 | 193.0472 |
57
+ | 173.0947 | 7.0 | 2289 | 152.0597 |
58
+ | 144.8752 | 8.0 | 2616 | 134.1329 |
59
+ | 132.4725 | 9.0 | 2943 | 126.2140 |
60
+ | 126.8917 | 10.0 | 3270 | 122.6400 |
61
+ | 124.3303 | 11.0 | 3597 | 120.9474 |
62
+ | 123.1025 | 12.0 | 3924 | 120.1213 |
63
+ | 122.4976 | 13.0 | 4251 | 119.7383 |
64
+ | 122.1977 | 14.0 | 4578 | 119.6165 |
65
+ | 122.0415 | 15.0 | 4905 | 119.4864 |
66
+ | 121.9523 | 16.0 | 5232 | 119.4457 |
67
+ | 121.8987 | 17.0 | 5559 | 119.3924 |
68
+ | 121.8588 | 18.0 | 5886 | 119.3609 |
69
+ | 121.8288 | 19.0 | 6213 | 119.3318 |
70
+ | 121.8026 | 20.0 | 6540 | 119.2987 |
71
+ | 121.7802 | 21.0 | 6867 | 119.3034 |
72
+ | 121.7603 | 22.0 | 7194 | 119.2751 |
73
+ | 121.7477 | 23.0 | 7521 | 119.2694 |
74
+ | 121.7309 | 24.0 | 7848 | 119.2594 |
75
+ | 121.7196 | 25.0 | 8175 | 119.2585 |
76
+ | 121.7066 | 26.0 | 8502 | 119.2561 |
77
+ | 121.6949 | 27.0 | 8829 | 119.2545 |
78
+ | 121.6839 | 28.0 | 9156 | 119.2495 |
79
+ | 121.6734 | 29.0 | 9483 | 119.2465 |
80
+ | 121.6636 | 30.0 | 9810 | 119.2468 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.44.2
86
+ - Pytorch 2.4.0+cu124
87
+ - Datasets 2.21.0
88
+ - Tokenizers 0.19.1
ins_model/config.json CHANGED
@@ -1,5 +1,4 @@
1
  {
2
- "_name_or_path": "/home/ljw/sdc1/CRISPR_results/Lindel/SX_spymac_Lindel_ins",
3
  "architectures": [
4
  "LindelModel"
5
  ],
 
1
  {
 
2
  "architectures": [
3
  "LindelModel"
4
  ],
ins_model/model.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig, PreTrainedModel
2
+ import torch.nn as nn
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ class LindelConfig(PretrainedConfig):
7
+ model_type = "Lindel"
8
+ label_names = ["count"]
9
+
10
+ def __init__(
11
+ self,
12
+ dlen = 30, # the upper limit of deletion length (strictly less than dlen)
13
+ mh_len = 4, # the upper limit of micro-homology length
14
+ model = "indel", # the actual model, should be "indel", "del", or "ins"
15
+ reg_mode = "l2", # regularization method, should be "l2" or "l1"
16
+ reg_const = 0.01, # regularization coefficient
17
+ seed = 63036, # random seed for intialization
18
+ **kwargs,
19
+ ):
20
+ self.dlen = dlen
21
+ self.mh_len = mh_len
22
+ self.model = model
23
+ self.reg_mode = reg_mode
24
+ self.reg_const = reg_const
25
+ self.seed = seed
26
+ super().__init__(**kwargs)
27
+
28
+ class LindelModel(PreTrainedModel):
29
+ config_class = LindelConfig
30
+
31
+ def __init__(self, config) -> None:
32
+ super().__init__(config)
33
+ # In more recent versions of PyTorch, you no longer need to explicitly register_parameter, it's enough to set a member of your nn.Module with nn.Parameter to "notify" pytorch that this variable should be treated as a trainable parameter (https://stackoverflow.com/questions/59234238/how-to-add-parameters-in-module-class-in-pytorch-custom-model).
34
+ self.generator = torch.Generator().manual_seed(config.seed)
35
+ self.reg_mode = config.reg_mode
36
+ self.reg_const = config.reg_const
37
+ if config.model == "indel":
38
+ # onehotencoder(ref[cut-17:cut+3])
39
+ feature_dim = 20 * 4 + 19 * 16
40
+ class_dim = 2
41
+ elif config.model == "ins":
42
+ # onehotencoder(ref[cut-3:cut+3])
43
+ feature_dim = 6 * 4 + 5 * 16
44
+ class_dim = 21
45
+ elif config.model == "del":
46
+ class_dim = (4 + 1 + 4 + config.dlen - 1) * (config.dlen - 1) // 2
47
+ # concatenate get_feature and onehotencoder(ref[cut-17:cut+3])
48
+ feature_dim = class_dim * (config.mh_len + 1) + 20 * 4 + 19 * 16
49
+ self.linear = nn.Linear(in_features=feature_dim, out_features=class_dim)
50
+ self.initialize_weights()
51
+
52
+ def initialize_weights(self):
53
+ for m in self.modules():
54
+ if isinstance(m, nn.Linear):
55
+ nn.init.normal_(m.weight, mean=0, std=1, generator=self.generator)
56
+ if m.bias is not None:
57
+ nn.init.constant_(m.bias, 0)
58
+
59
+ def forward(self, input, count=None) -> torch.Tensor:
60
+ logit = self.linear(input)
61
+ if count is not None:
62
+ return {
63
+ "logit": logit,
64
+ "loss": self.cross_entropy_reg(logit, count)
65
+ }
66
+ return {"logit": logit}
67
+
68
+ def cross_entropy_reg(self, logit, count):
69
+ if self.reg_mode == "l2":
70
+ reg_term = (self.linear.weight ** 2).sum()
71
+ elif self.reg_mode == "l1":
72
+ reg_term = abs(self.linear.weight).sum()
73
+ return -(F.log_softmax(logit, dim=1) * F.normalize(count.to(torch.float32), p=1.0, dim=1)).sum() + logit.shape[0] * self.reg_const * reg_term
ins_model/runs/Nov20_10-39-06_ljw-System-Product-Name/events.out.tfevents.1732071299.ljw-System-Product-Name.1207628.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc226724cd177a32319de0a533584f945aed223c607ea92374225170bd7f4a62
3
+ size 19399
ins_model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21c005e7ea435126b1519e6f31e72b44b1d280ed91d1a896dc30926f4eee0d10
3
+ size 5304