|  | import math | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_weights(m, mean=0.0, std=0.01): | 
					
						
						|  | classname = m.__class__.__name__ | 
					
						
						|  | if classname.find("Conv") != -1: | 
					
						
						|  | m.weight.data.normal_(mean, std) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_padding(kernel_size, dilation=1): | 
					
						
						|  | return int((kernel_size * dilation - dilation) / 2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_pad_shape(pad_shape): | 
					
						
						|  | l = pad_shape[::-1] | 
					
						
						|  | pad_shape = [item for sublist in l for item in sublist] | 
					
						
						|  | return pad_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def kl_divergence(m_p, logs_p, m_q, logs_q): | 
					
						
						|  | """KL(P||Q)""" | 
					
						
						|  | kl = (logs_q - logs_p) - 0.5 | 
					
						
						|  | kl += ( | 
					
						
						|  | 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) | 
					
						
						|  | ) | 
					
						
						|  | return kl | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rand_gumbel(shape): | 
					
						
						|  | """Sample from the Gumbel distribution, protect from overflows.""" | 
					
						
						|  | uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 | 
					
						
						|  | return -torch.log(-torch.log(uniform_samples)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rand_gumbel_like(x): | 
					
						
						|  | g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) | 
					
						
						|  | return g | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def slice_segments(x, ids_str, segment_size=4): | 
					
						
						|  | ret = torch.zeros_like(x[:, :, :segment_size]) | 
					
						
						|  | for i in range(x.size(0)): | 
					
						
						|  | idx_str = ids_str[i] | 
					
						
						|  | idx_end = idx_str + segment_size | 
					
						
						|  | ret[i] = x[i, :, idx_str:idx_end] | 
					
						
						|  | return ret | 
					
						
						|  | def slice_segments2(x, ids_str, segment_size=4): | 
					
						
						|  | ret = torch.zeros_like(x[:,  :segment_size]) | 
					
						
						|  | for i in range(x.size(0)): | 
					
						
						|  | idx_str = ids_str[i] | 
					
						
						|  | idx_end = idx_str + segment_size | 
					
						
						|  | ret[i] = x[i, idx_str:idx_end] | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rand_slice_segments(x, x_lengths=None, segment_size=4): | 
					
						
						|  | b, d, t = x.size() | 
					
						
						|  | if x_lengths is None: | 
					
						
						|  | x_lengths = t | 
					
						
						|  | ids_str_max = x_lengths - segment_size + 1 | 
					
						
						|  | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) | 
					
						
						|  | ret = slice_segments(x, ids_str, segment_size) | 
					
						
						|  | return ret, ids_str | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): | 
					
						
						|  | position = torch.arange(length, dtype=torch.float) | 
					
						
						|  | num_timescales = channels // 2 | 
					
						
						|  | log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( | 
					
						
						|  | num_timescales - 1 | 
					
						
						|  | ) | 
					
						
						|  | inv_timescales = min_timescale * torch.exp( | 
					
						
						|  | torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment | 
					
						
						|  | ) | 
					
						
						|  | scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) | 
					
						
						|  | signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) | 
					
						
						|  | signal = F.pad(signal, [0, 0, 0, channels % 2]) | 
					
						
						|  | signal = signal.view(1, channels, length) | 
					
						
						|  | return signal | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): | 
					
						
						|  | b, channels, length = x.size() | 
					
						
						|  | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | 
					
						
						|  | return x + signal.to(dtype=x.dtype, device=x.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): | 
					
						
						|  | b, channels, length = x.size() | 
					
						
						|  | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) | 
					
						
						|  | return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def subsequent_mask(length): | 
					
						
						|  | mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | 
					
						
						|  | return mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.jit.script | 
					
						
						|  | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | 
					
						
						|  | n_channels_int = n_channels[0] | 
					
						
						|  | in_act = input_a + input_b | 
					
						
						|  | t_act = torch.tanh(in_act[:, :n_channels_int, :]) | 
					
						
						|  | s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | 
					
						
						|  | acts = t_act * s_act | 
					
						
						|  | return acts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def convert_pad_shape(pad_shape): | 
					
						
						|  | l = pad_shape[::-1] | 
					
						
						|  | pad_shape = [item for sublist in l for item in sublist] | 
					
						
						|  | return pad_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def shift_1d(x): | 
					
						
						|  | x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sequence_mask(length, max_length=None): | 
					
						
						|  | if max_length is None: | 
					
						
						|  | max_length = length.max() | 
					
						
						|  | x = torch.arange(max_length, dtype=length.dtype, device=length.device) | 
					
						
						|  | return x.unsqueeze(0) < length.unsqueeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generate_path(duration, mask): | 
					
						
						|  | """ | 
					
						
						|  | duration: [b, 1, t_x] | 
					
						
						|  | mask: [b, 1, t_y, t_x] | 
					
						
						|  | """ | 
					
						
						|  | device = duration.device | 
					
						
						|  |  | 
					
						
						|  | b, _, t_y, t_x = mask.shape | 
					
						
						|  | cum_duration = torch.cumsum(duration, -1) | 
					
						
						|  |  | 
					
						
						|  | cum_duration_flat = cum_duration.view(b * t_x) | 
					
						
						|  | path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | 
					
						
						|  | path = path.view(b, t_x, t_y) | 
					
						
						|  | path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | 
					
						
						|  | path = path.unsqueeze(1).transpose(2, 3) * mask | 
					
						
						|  | return path | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def clip_grad_value_(parameters, clip_value, norm_type=2): | 
					
						
						|  | if isinstance(parameters, torch.Tensor): | 
					
						
						|  | parameters = [parameters] | 
					
						
						|  | parameters = list(filter(lambda p: p.grad is not None, parameters)) | 
					
						
						|  | norm_type = float(norm_type) | 
					
						
						|  | if clip_value is not None: | 
					
						
						|  | clip_value = float(clip_value) | 
					
						
						|  |  | 
					
						
						|  | total_norm = 0 | 
					
						
						|  | for p in parameters: | 
					
						
						|  | param_norm = p.grad.data.norm(norm_type) | 
					
						
						|  | total_norm += param_norm.item() ** norm_type | 
					
						
						|  | if clip_value is not None: | 
					
						
						|  | p.grad.data.clamp_(min=-clip_value, max=clip_value) | 
					
						
						|  | total_norm = total_norm ** (1.0 / norm_type) | 
					
						
						|  | return total_norm | 
					
						
						|  |  |