rootxsli commited on
Commit
ec4ed51
·
1 Parent(s): 69a651c
Files changed (1) hide show
  1. README.md +2599 -0
README.md ADDED
@@ -0,0 +1,2599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - my_mteb
4
+ model-index:
5
+ - name: xlm3b5_step3len260_b128g8_lr1e-5
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 69.01492537313432
18
+ - type: ap
19
+ value: 30.936372983952477
20
+ - type: f1
21
+ value: 62.58864357716914
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 95.088975
33
+ - type: ap
34
+ value: 92.9329025853096
35
+ - type: f1
36
+ value: 95.0864056657106
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 50.524
48
+ - type: f1
49
+ value: 49.93715365750685
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 17.781
61
+ - type: map_at_10
62
+ value: 30.854
63
+ - type: map_at_100
64
+ value: 32.344
65
+ - type: map_at_1000
66
+ value: 32.364
67
+ - type: map_at_3
68
+ value: 25.711000000000002
69
+ - type: map_at_5
70
+ value: 28.254
71
+ - type: mrr_at_1
72
+ value: 18.563
73
+ - type: mrr_at_10
74
+ value: 31.137999999999998
75
+ - type: mrr_at_100
76
+ value: 32.621
77
+ - type: mrr_at_1000
78
+ value: 32.641
79
+ - type: mrr_at_3
80
+ value: 25.984
81
+ - type: mrr_at_5
82
+ value: 28.53
83
+ - type: ndcg_at_1
84
+ value: 17.781
85
+ - type: ndcg_at_10
86
+ value: 39.206
87
+ - type: ndcg_at_100
88
+ value: 45.751
89
+ - type: ndcg_at_1000
90
+ value: 46.225
91
+ - type: ndcg_at_3
92
+ value: 28.313
93
+ - type: ndcg_at_5
94
+ value: 32.919
95
+ - type: precision_at_1
96
+ value: 17.781
97
+ - type: precision_at_10
98
+ value: 6.65
99
+ - type: precision_at_100
100
+ value: 0.9560000000000001
101
+ - type: precision_at_1000
102
+ value: 0.099
103
+ - type: precision_at_3
104
+ value: 11.949
105
+ - type: precision_at_5
106
+ value: 9.417
107
+ - type: recall_at_1
108
+ value: 17.781
109
+ - type: recall_at_10
110
+ value: 66.501
111
+ - type: recall_at_100
112
+ value: 95.59
113
+ - type: recall_at_1000
114
+ value: 99.21799999999999
115
+ - type: recall_at_3
116
+ value: 35.846000000000004
117
+ - type: recall_at_5
118
+ value: 47.083999999999996
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 44.44154312957711
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 34.189712542346385
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 62.72571219134687
152
+ - type: mrr
153
+ value: 76.3612979817966
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 83.62762841254953
165
+ - type: cos_sim_spearman
166
+ value: 80.72111639383013
167
+ - type: euclidean_pearson
168
+ value: 82.63506732956259
169
+ - type: euclidean_spearman
170
+ value: 81.177753304636
171
+ - type: manhattan_pearson
172
+ value: 82.5891836637346
173
+ - type: manhattan_spearman
174
+ value: 81.06811225217339
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 1.4123376623376624
186
+ - type: f1
187
+ value: 0.06543826204021423
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 37.82441952130262
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 32.132057843418416
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 34.23
221
+ - type: map_at_10
222
+ value: 46.763
223
+ - type: map_at_100
224
+ value: 48.454
225
+ - type: map_at_1000
226
+ value: 48.58
227
+ - type: map_at_3
228
+ value: 43.167
229
+ - type: map_at_5
230
+ value: 45.214
231
+ - type: mrr_at_1
232
+ value: 42.775
233
+ - type: mrr_at_10
234
+ value: 53.190000000000005
235
+ - type: mrr_at_100
236
+ value: 53.928
237
+ - type: mrr_at_1000
238
+ value: 53.964
239
+ - type: mrr_at_3
240
+ value: 51.168
241
+ - type: mrr_at_5
242
+ value: 52.434000000000005
243
+ - type: ndcg_at_1
244
+ value: 42.775
245
+ - type: ndcg_at_10
246
+ value: 53.376999999999995
247
+ - type: ndcg_at_100
248
+ value: 58.748
249
+ - type: ndcg_at_1000
250
+ value: 60.461
251
+ - type: ndcg_at_3
252
+ value: 48.929
253
+ - type: ndcg_at_5
254
+ value: 50.99399999999999
255
+ - type: precision_at_1
256
+ value: 42.775
257
+ - type: precision_at_10
258
+ value: 10.428999999999998
259
+ - type: precision_at_100
260
+ value: 1.678
261
+ - type: precision_at_1000
262
+ value: 0.215
263
+ - type: precision_at_3
264
+ value: 23.939
265
+ - type: precision_at_5
266
+ value: 17.082
267
+ - type: recall_at_1
268
+ value: 34.23
269
+ - type: recall_at_10
270
+ value: 64.96300000000001
271
+ - type: recall_at_100
272
+ value: 86.803
273
+ - type: recall_at_1000
274
+ value: 97.917
275
+ - type: recall_at_3
276
+ value: 51.815
277
+ - type: recall_at_5
278
+ value: 57.781000000000006
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 28.935
290
+ - type: map_at_10
291
+ value: 39.574999999999996
292
+ - type: map_at_100
293
+ value: 40.891
294
+ - type: map_at_1000
295
+ value: 41.043
296
+ - type: map_at_3
297
+ value: 36.248999999999995
298
+ - type: map_at_5
299
+ value: 38.157999999999994
300
+ - type: mrr_at_1
301
+ value: 36.624
302
+ - type: mrr_at_10
303
+ value: 45.241
304
+ - type: mrr_at_100
305
+ value: 46.028000000000006
306
+ - type: mrr_at_1000
307
+ value: 46.082
308
+ - type: mrr_at_3
309
+ value: 42.93
310
+ - type: mrr_at_5
311
+ value: 44.417
312
+ - type: ndcg_at_1
313
+ value: 36.624
314
+ - type: ndcg_at_10
315
+ value: 45.423
316
+ - type: ndcg_at_100
317
+ value: 49.971
318
+ - type: ndcg_at_1000
319
+ value: 52.382
320
+ - type: ndcg_at_3
321
+ value: 41.019
322
+ - type: ndcg_at_5
323
+ value: 43.254
324
+ - type: precision_at_1
325
+ value: 36.624
326
+ - type: precision_at_10
327
+ value: 8.86
328
+ - type: precision_at_100
329
+ value: 1.458
330
+ - type: precision_at_1000
331
+ value: 0.198
332
+ - type: precision_at_3
333
+ value: 20.276
334
+ - type: precision_at_5
335
+ value: 14.573
336
+ - type: recall_at_1
337
+ value: 28.935
338
+ - type: recall_at_10
339
+ value: 55.745999999999995
340
+ - type: recall_at_100
341
+ value: 74.977
342
+ - type: recall_at_1000
343
+ value: 90.505
344
+ - type: recall_at_3
345
+ value: 42.575
346
+ - type: recall_at_5
347
+ value: 48.902
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 38.828
359
+ - type: map_at_10
360
+ value: 50.888999999999996
361
+ - type: map_at_100
362
+ value: 52.001
363
+ - type: map_at_1000
364
+ value: 52.054
365
+ - type: map_at_3
366
+ value: 47.638999999999996
367
+ - type: map_at_5
368
+ value: 49.423
369
+ - type: mrr_at_1
370
+ value: 44.765
371
+ - type: mrr_at_10
372
+ value: 54.408
373
+ - type: mrr_at_100
374
+ value: 55.116
375
+ - type: mrr_at_1000
376
+ value: 55.144000000000005
377
+ - type: mrr_at_3
378
+ value: 52.038
379
+ - type: mrr_at_5
380
+ value: 53.323
381
+ - type: ndcg_at_1
382
+ value: 44.765
383
+ - type: ndcg_at_10
384
+ value: 56.724
385
+ - type: ndcg_at_100
386
+ value: 61.058
387
+ - type: ndcg_at_1000
388
+ value: 62.125
389
+ - type: ndcg_at_3
390
+ value: 51.324000000000005
391
+ - type: ndcg_at_5
392
+ value: 53.805
393
+ - type: precision_at_1
394
+ value: 44.765
395
+ - type: precision_at_10
396
+ value: 9.248000000000001
397
+ - type: precision_at_100
398
+ value: 1.234
399
+ - type: precision_at_1000
400
+ value: 0.136
401
+ - type: precision_at_3
402
+ value: 23.093
403
+ - type: precision_at_5
404
+ value: 15.799
405
+ - type: recall_at_1
406
+ value: 38.828
407
+ - type: recall_at_10
408
+ value: 70.493
409
+ - type: recall_at_100
410
+ value: 89.293
411
+ - type: recall_at_1000
412
+ value: 96.872
413
+ - type: recall_at_3
414
+ value: 55.74400000000001
415
+ - type: recall_at_5
416
+ value: 61.95
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 22.085
428
+ - type: map_at_10
429
+ value: 30.070000000000004
430
+ - type: map_at_100
431
+ value: 31.206
432
+ - type: map_at_1000
433
+ value: 31.291999999999998
434
+ - type: map_at_3
435
+ value: 27.011000000000003
436
+ - type: map_at_5
437
+ value: 28.854999999999997
438
+ - type: mrr_at_1
439
+ value: 23.842
440
+ - type: mrr_at_10
441
+ value: 31.755
442
+ - type: mrr_at_100
443
+ value: 32.778
444
+ - type: mrr_at_1000
445
+ value: 32.845
446
+ - type: mrr_at_3
447
+ value: 28.851
448
+ - type: mrr_at_5
449
+ value: 30.574
450
+ - type: ndcg_at_1
451
+ value: 23.842
452
+ - type: ndcg_at_10
453
+ value: 35.052
454
+ - type: ndcg_at_100
455
+ value: 40.550999999999995
456
+ - type: ndcg_at_1000
457
+ value: 42.789
458
+ - type: ndcg_at_3
459
+ value: 29.096
460
+ - type: ndcg_at_5
461
+ value: 32.251000000000005
462
+ - type: precision_at_1
463
+ value: 23.842
464
+ - type: precision_at_10
465
+ value: 5.605
466
+ - type: precision_at_100
467
+ value: 0.877
468
+ - type: precision_at_1000
469
+ value: 0.11100000000000002
470
+ - type: precision_at_3
471
+ value: 12.316
472
+ - type: precision_at_5
473
+ value: 9.13
474
+ - type: recall_at_1
475
+ value: 22.085
476
+ - type: recall_at_10
477
+ value: 48.815999999999995
478
+ - type: recall_at_100
479
+ value: 74.039
480
+ - type: recall_at_1000
481
+ value: 90.872
482
+ - type: recall_at_3
483
+ value: 33.098
484
+ - type: recall_at_5
485
+ value: 40.647
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 14.088999999999999
497
+ - type: map_at_10
498
+ value: 21.526
499
+ - type: map_at_100
500
+ value: 22.832
501
+ - type: map_at_1000
502
+ value: 22.958000000000002
503
+ - type: map_at_3
504
+ value: 18.747
505
+ - type: map_at_5
506
+ value: 20.396
507
+ - type: mrr_at_1
508
+ value: 17.662
509
+ - type: mrr_at_10
510
+ value: 25.513
511
+ - type: mrr_at_100
512
+ value: 26.621
513
+ - type: mrr_at_1000
514
+ value: 26.698
515
+ - type: mrr_at_3
516
+ value: 22.658
517
+ - type: mrr_at_5
518
+ value: 24.449
519
+ - type: ndcg_at_1
520
+ value: 17.662
521
+ - type: ndcg_at_10
522
+ value: 26.506999999999998
523
+ - type: ndcg_at_100
524
+ value: 32.782
525
+ - type: ndcg_at_1000
526
+ value: 35.709999999999994
527
+ - type: ndcg_at_3
528
+ value: 21.279
529
+ - type: ndcg_at_5
530
+ value: 23.998
531
+ - type: precision_at_1
532
+ value: 17.662
533
+ - type: precision_at_10
534
+ value: 5.124
535
+ - type: precision_at_100
536
+ value: 0.951
537
+ - type: precision_at_1000
538
+ value: 0.133
539
+ - type: precision_at_3
540
+ value: 10.323
541
+ - type: precision_at_5
542
+ value: 8.158999999999999
543
+ - type: recall_at_1
544
+ value: 14.088999999999999
545
+ - type: recall_at_10
546
+ value: 37.874
547
+ - type: recall_at_100
548
+ value: 65.34100000000001
549
+ - type: recall_at_1000
550
+ value: 86.06099999999999
551
+ - type: recall_at_3
552
+ value: 23.738999999999997
553
+ - type: recall_at_5
554
+ value: 30.359
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 24.75
566
+ - type: map_at_10
567
+ value: 34.156
568
+ - type: map_at_100
569
+ value: 35.638999999999996
570
+ - type: map_at_1000
571
+ value: 35.754999999999995
572
+ - type: map_at_3
573
+ value: 31.047000000000004
574
+ - type: map_at_5
575
+ value: 32.823
576
+ - type: mrr_at_1
577
+ value: 30.991000000000003
578
+ - type: mrr_at_10
579
+ value: 39.509
580
+ - type: mrr_at_100
581
+ value: 40.582
582
+ - type: mrr_at_1000
583
+ value: 40.636
584
+ - type: mrr_at_3
585
+ value: 37.103
586
+ - type: mrr_at_5
587
+ value: 38.503
588
+ - type: ndcg_at_1
589
+ value: 30.991000000000003
590
+ - type: ndcg_at_10
591
+ value: 39.719
592
+ - type: ndcg_at_100
593
+ value: 45.984
594
+ - type: ndcg_at_1000
595
+ value: 48.293
596
+ - type: ndcg_at_3
597
+ value: 34.92
598
+ - type: ndcg_at_5
599
+ value: 37.253
600
+ - type: precision_at_1
601
+ value: 30.991000000000003
602
+ - type: precision_at_10
603
+ value: 7.3340000000000005
604
+ - type: precision_at_100
605
+ value: 1.225
606
+ - type: precision_at_1000
607
+ value: 0.16
608
+ - type: precision_at_3
609
+ value: 16.586000000000002
610
+ - type: precision_at_5
611
+ value: 12.127
612
+ - type: recall_at_1
613
+ value: 24.75
614
+ - type: recall_at_10
615
+ value: 51.113
616
+ - type: recall_at_100
617
+ value: 77.338
618
+ - type: recall_at_1000
619
+ value: 92.764
620
+ - type: recall_at_3
621
+ value: 37.338
622
+ - type: recall_at_5
623
+ value: 43.437
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 23.158
635
+ - type: map_at_10
636
+ value: 32.877
637
+ - type: map_at_100
638
+ value: 34.226
639
+ - type: map_at_1000
640
+ value: 34.35
641
+ - type: map_at_3
642
+ value: 29.43
643
+ - type: map_at_5
644
+ value: 31.319000000000003
645
+ - type: mrr_at_1
646
+ value: 29.224
647
+ - type: mrr_at_10
648
+ value: 38.080000000000005
649
+ - type: mrr_at_100
650
+ value: 39.04
651
+ - type: mrr_at_1000
652
+ value: 39.097
653
+ - type: mrr_at_3
654
+ value: 35.407
655
+ - type: mrr_at_5
656
+ value: 36.771
657
+ - type: ndcg_at_1
658
+ value: 29.224
659
+ - type: ndcg_at_10
660
+ value: 38.805
661
+ - type: ndcg_at_100
662
+ value: 44.746
663
+ - type: ndcg_at_1000
664
+ value: 47.038000000000004
665
+ - type: ndcg_at_3
666
+ value: 33.269
667
+ - type: ndcg_at_5
668
+ value: 35.611
669
+ - type: precision_at_1
670
+ value: 29.224
671
+ - type: precision_at_10
672
+ value: 7.454
673
+ - type: precision_at_100
674
+ value: 1.221
675
+ - type: precision_at_1000
676
+ value: 0.16199999999999998
677
+ - type: precision_at_3
678
+ value: 16.134
679
+ - type: precision_at_5
680
+ value: 11.895
681
+ - type: recall_at_1
682
+ value: 23.158
683
+ - type: recall_at_10
684
+ value: 51.487
685
+ - type: recall_at_100
686
+ value: 77.464
687
+ - type: recall_at_1000
688
+ value: 92.525
689
+ - type: recall_at_3
690
+ value: 35.478
691
+ - type: recall_at_5
692
+ value: 41.722
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 24.456916666666668
704
+ - type: map_at_10
705
+ value: 33.5495
706
+ - type: map_at_100
707
+ value: 34.86808333333333
708
+ - type: map_at_1000
709
+ value: 34.98908333333333
710
+ - type: map_at_3
711
+ value: 30.59158333333334
712
+ - type: map_at_5
713
+ value: 32.24916666666667
714
+ - type: mrr_at_1
715
+ value: 29.387250000000005
716
+ - type: mrr_at_10
717
+ value: 37.73958333333333
718
+ - type: mrr_at_100
719
+ value: 38.6595
720
+ - type: mrr_at_1000
721
+ value: 38.718250000000005
722
+ - type: mrr_at_3
723
+ value: 35.31658333333333
724
+ - type: mrr_at_5
725
+ value: 36.69441666666667
726
+ - type: ndcg_at_1
727
+ value: 29.387250000000005
728
+ - type: ndcg_at_10
729
+ value: 38.910333333333334
730
+ - type: ndcg_at_100
731
+ value: 44.40241666666666
732
+ - type: ndcg_at_1000
733
+ value: 46.72008333333334
734
+ - type: ndcg_at_3
735
+ value: 34.045583333333326
736
+ - type: ndcg_at_5
737
+ value: 36.33725
738
+ - type: precision_at_1
739
+ value: 29.387250000000005
740
+ - type: precision_at_10
741
+ value: 7.034666666666668
742
+ - type: precision_at_100
743
+ value: 1.1698333333333333
744
+ - type: precision_at_1000
745
+ value: 0.15599999999999997
746
+ - type: precision_at_3
747
+ value: 15.866416666666666
748
+ - type: precision_at_5
749
+ value: 11.456333333333331
750
+ - type: recall_at_1
751
+ value: 24.456916666666668
752
+ - type: recall_at_10
753
+ value: 50.47758333333333
754
+ - type: recall_at_100
755
+ value: 74.52275
756
+ - type: recall_at_1000
757
+ value: 90.7105
758
+ - type: recall_at_3
759
+ value: 36.86275
760
+ - type: recall_at_5
761
+ value: 42.76533333333333
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 19.356
773
+ - type: map_at_10
774
+ value: 25.378
775
+ - type: map_at_100
776
+ value: 26.349
777
+ - type: map_at_1000
778
+ value: 26.451
779
+ - type: map_at_3
780
+ value: 23.403
781
+ - type: map_at_5
782
+ value: 24.614
783
+ - type: mrr_at_1
784
+ value: 22.086
785
+ - type: mrr_at_10
786
+ value: 28.072000000000003
787
+ - type: mrr_at_100
788
+ value: 28.887
789
+ - type: mrr_at_1000
790
+ value: 28.965999999999998
791
+ - type: mrr_at_3
792
+ value: 26.074
793
+ - type: mrr_at_5
794
+ value: 27.293
795
+ - type: ndcg_at_1
796
+ value: 22.086
797
+ - type: ndcg_at_10
798
+ value: 29.107
799
+ - type: ndcg_at_100
800
+ value: 34.0
801
+ - type: ndcg_at_1000
802
+ value: 36.793
803
+ - type: ndcg_at_3
804
+ value: 25.407999999999998
805
+ - type: ndcg_at_5
806
+ value: 27.375
807
+ - type: precision_at_1
808
+ value: 22.086
809
+ - type: precision_at_10
810
+ value: 4.678
811
+ - type: precision_at_100
812
+ value: 0.7779999999999999
813
+ - type: precision_at_1000
814
+ value: 0.11
815
+ - type: precision_at_3
816
+ value: 10.992
817
+ - type: precision_at_5
818
+ value: 7.853000000000001
819
+ - type: recall_at_1
820
+ value: 19.356
821
+ - type: recall_at_10
822
+ value: 37.913999999999994
823
+ - type: recall_at_100
824
+ value: 60.507999999999996
825
+ - type: recall_at_1000
826
+ value: 81.459
827
+ - type: recall_at_3
828
+ value: 27.874
829
+ - type: recall_at_5
830
+ value: 32.688
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 16.008
842
+ - type: map_at_10
843
+ value: 22.431
844
+ - type: map_at_100
845
+ value: 23.61
846
+ - type: map_at_1000
847
+ value: 23.743
848
+ - type: map_at_3
849
+ value: 20.358
850
+ - type: map_at_5
851
+ value: 21.371000000000002
852
+ - type: mrr_at_1
853
+ value: 19.752
854
+ - type: mrr_at_10
855
+ value: 26.333000000000002
856
+ - type: mrr_at_100
857
+ value: 27.297
858
+ - type: mrr_at_1000
859
+ value: 27.378000000000004
860
+ - type: mrr_at_3
861
+ value: 24.358
862
+ - type: mrr_at_5
863
+ value: 25.354
864
+ - type: ndcg_at_1
865
+ value: 19.752
866
+ - type: ndcg_at_10
867
+ value: 26.712000000000003
868
+ - type: ndcg_at_100
869
+ value: 32.294
870
+ - type: ndcg_at_1000
871
+ value: 35.410000000000004
872
+ - type: ndcg_at_3
873
+ value: 22.974
874
+ - type: ndcg_at_5
875
+ value: 24.412
876
+ - type: precision_at_1
877
+ value: 19.752
878
+ - type: precision_at_10
879
+ value: 4.986
880
+ - type: precision_at_100
881
+ value: 0.924
882
+ - type: precision_at_1000
883
+ value: 0.13699999999999998
884
+ - type: precision_at_3
885
+ value: 10.966
886
+ - type: precision_at_5
887
+ value: 7.832
888
+ - type: recall_at_1
889
+ value: 16.008
890
+ - type: recall_at_10
891
+ value: 35.716
892
+ - type: recall_at_100
893
+ value: 60.76200000000001
894
+ - type: recall_at_1000
895
+ value: 83.204
896
+ - type: recall_at_3
897
+ value: 25.092
898
+ - type: recall_at_5
899
+ value: 28.858
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 24.743000000000002
911
+ - type: map_at_10
912
+ value: 34.492
913
+ - type: map_at_100
914
+ value: 35.716
915
+ - type: map_at_1000
916
+ value: 35.815999999999995
917
+ - type: map_at_3
918
+ value: 31.201
919
+ - type: map_at_5
920
+ value: 32.926
921
+ - type: mrr_at_1
922
+ value: 29.384
923
+ - type: mrr_at_10
924
+ value: 38.333
925
+ - type: mrr_at_100
926
+ value: 39.278
927
+ - type: mrr_at_1000
928
+ value: 39.330999999999996
929
+ - type: mrr_at_3
930
+ value: 35.65
931
+ - type: mrr_at_5
932
+ value: 36.947
933
+ - type: ndcg_at_1
934
+ value: 29.384
935
+ - type: ndcg_at_10
936
+ value: 40.195
937
+ - type: ndcg_at_100
938
+ value: 45.686
939
+ - type: ndcg_at_1000
940
+ value: 47.906
941
+ - type: ndcg_at_3
942
+ value: 34.477000000000004
943
+ - type: ndcg_at_5
944
+ value: 36.89
945
+ - type: precision_at_1
946
+ value: 29.384
947
+ - type: precision_at_10
948
+ value: 7.164
949
+ - type: precision_at_100
950
+ value: 1.111
951
+ - type: precision_at_1000
952
+ value: 0.13999999999999999
953
+ - type: precision_at_3
954
+ value: 15.983
955
+ - type: precision_at_5
956
+ value: 11.418000000000001
957
+ - type: recall_at_1
958
+ value: 24.743000000000002
959
+ - type: recall_at_10
960
+ value: 53.602000000000004
961
+ - type: recall_at_100
962
+ value: 77.266
963
+ - type: recall_at_1000
964
+ value: 92.857
965
+ - type: recall_at_3
966
+ value: 37.921
967
+ - type: recall_at_5
968
+ value: 44.124
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 26.531
980
+ - type: map_at_10
981
+ value: 35.933
982
+ - type: map_at_100
983
+ value: 37.913000000000004
984
+ - type: map_at_1000
985
+ value: 38.146
986
+ - type: map_at_3
987
+ value: 32.713
988
+ - type: map_at_5
989
+ value: 34.339999999999996
990
+ - type: mrr_at_1
991
+ value: 32.806000000000004
992
+ - type: mrr_at_10
993
+ value: 41.728
994
+ - type: mrr_at_100
995
+ value: 42.731
996
+ - type: mrr_at_1000
997
+ value: 42.777
998
+ - type: mrr_at_3
999
+ value: 39.065
1000
+ - type: mrr_at_5
1001
+ value: 40.467999999999996
1002
+ - type: ndcg_at_1
1003
+ value: 32.806000000000004
1004
+ - type: ndcg_at_10
1005
+ value: 42.254999999999995
1006
+ - type: ndcg_at_100
1007
+ value: 48.687999999999995
1008
+ - type: ndcg_at_1000
1009
+ value: 50.784
1010
+ - type: ndcg_at_3
1011
+ value: 37.330999999999996
1012
+ - type: ndcg_at_5
1013
+ value: 39.305
1014
+ - type: precision_at_1
1015
+ value: 32.806000000000004
1016
+ - type: precision_at_10
1017
+ value: 8.34
1018
+ - type: precision_at_100
1019
+ value: 1.7209999999999999
1020
+ - type: precision_at_1000
1021
+ value: 0.252
1022
+ - type: precision_at_3
1023
+ value: 17.589
1024
+ - type: precision_at_5
1025
+ value: 12.845999999999998
1026
+ - type: recall_at_1
1027
+ value: 26.531
1028
+ - type: recall_at_10
1029
+ value: 53.266000000000005
1030
+ - type: recall_at_100
1031
+ value: 81.49499999999999
1032
+ - type: recall_at_1000
1033
+ value: 94.506
1034
+ - type: recall_at_3
1035
+ value: 38.848
1036
+ - type: recall_at_5
1037
+ value: 44.263000000000005
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 20.77
1049
+ - type: map_at_10
1050
+ value: 28.504
1051
+ - type: map_at_100
1052
+ value: 29.580000000000002
1053
+ - type: map_at_1000
1054
+ value: 29.681
1055
+ - type: map_at_3
1056
+ value: 26.134
1057
+ - type: map_at_5
1058
+ value: 27.551
1059
+ - type: mrr_at_1
1060
+ value: 22.736
1061
+ - type: mrr_at_10
1062
+ value: 30.713
1063
+ - type: mrr_at_100
1064
+ value: 31.628
1065
+ - type: mrr_at_1000
1066
+ value: 31.701
1067
+ - type: mrr_at_3
1068
+ value: 28.497
1069
+ - type: mrr_at_5
1070
+ value: 29.799999999999997
1071
+ - type: ndcg_at_1
1072
+ value: 22.736
1073
+ - type: ndcg_at_10
1074
+ value: 33.048
1075
+ - type: ndcg_at_100
1076
+ value: 38.321
1077
+ - type: ndcg_at_1000
1078
+ value: 40.949999999999996
1079
+ - type: ndcg_at_3
1080
+ value: 28.521
1081
+ - type: ndcg_at_5
1082
+ value: 30.898999999999997
1083
+ - type: precision_at_1
1084
+ value: 22.736
1085
+ - type: precision_at_10
1086
+ value: 5.194
1087
+ - type: precision_at_100
1088
+ value: 0.86
1089
+ - type: precision_at_1000
1090
+ value: 0.11800000000000001
1091
+ - type: precision_at_3
1092
+ value: 12.2
1093
+ - type: precision_at_5
1094
+ value: 8.762
1095
+ - type: recall_at_1
1096
+ value: 20.77
1097
+ - type: recall_at_10
1098
+ value: 44.741
1099
+ - type: recall_at_100
1100
+ value: 68.987
1101
+ - type: recall_at_1000
1102
+ value: 88.984
1103
+ - type: recall_at_3
1104
+ value: 32.830999999999996
1105
+ - type: recall_at_5
1106
+ value: 38.452999999999996
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 9.646
1118
+ - type: map_at_10
1119
+ value: 17.432
1120
+ - type: map_at_100
1121
+ value: 19.347
1122
+ - type: map_at_1000
1123
+ value: 19.555
1124
+ - type: map_at_3
1125
+ value: 14.355
1126
+ - type: map_at_5
1127
+ value: 15.83
1128
+ - type: mrr_at_1
1129
+ value: 21.433
1130
+ - type: mrr_at_10
1131
+ value: 32.583
1132
+ - type: mrr_at_100
1133
+ value: 33.708
1134
+ - type: mrr_at_1000
1135
+ value: 33.751999999999995
1136
+ - type: mrr_at_3
1137
+ value: 28.979
1138
+ - type: mrr_at_5
1139
+ value: 30.979
1140
+ - type: ndcg_at_1
1141
+ value: 21.433
1142
+ - type: ndcg_at_10
1143
+ value: 25.025
1144
+ - type: ndcg_at_100
1145
+ value: 32.818999999999996
1146
+ - type: ndcg_at_1000
1147
+ value: 36.549
1148
+ - type: ndcg_at_3
1149
+ value: 19.689
1150
+ - type: ndcg_at_5
1151
+ value: 21.462
1152
+ - type: precision_at_1
1153
+ value: 21.433
1154
+ - type: precision_at_10
1155
+ value: 8.085
1156
+ - type: precision_at_100
1157
+ value: 1.6340000000000001
1158
+ - type: precision_at_1000
1159
+ value: 0.233
1160
+ - type: precision_at_3
1161
+ value: 14.832
1162
+ - type: precision_at_5
1163
+ value: 11.530999999999999
1164
+ - type: recall_at_1
1165
+ value: 9.646
1166
+ - type: recall_at_10
1167
+ value: 31.442999999999998
1168
+ - type: recall_at_100
1169
+ value: 58.48
1170
+ - type: recall_at_1000
1171
+ value: 79.253
1172
+ - type: recall_at_3
1173
+ value: 18.545
1174
+ - type: recall_at_5
1175
+ value: 23.362
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 8.48
1187
+ - type: map_at_10
1188
+ value: 18.127
1189
+ - type: map_at_100
1190
+ value: 25.563999999999997
1191
+ - type: map_at_1000
1192
+ value: 27.386
1193
+ - type: map_at_3
1194
+ value: 13.189
1195
+ - type: map_at_5
1196
+ value: 15.417
1197
+ - type: mrr_at_1
1198
+ value: 63.74999999999999
1199
+ - type: mrr_at_10
1200
+ value: 71.34899999999999
1201
+ - type: mrr_at_100
1202
+ value: 71.842
1203
+ - type: mrr_at_1000
1204
+ value: 71.851
1205
+ - type: mrr_at_3
1206
+ value: 69.167
1207
+ - type: mrr_at_5
1208
+ value: 70.479
1209
+ - type: ndcg_at_1
1210
+ value: 51.87500000000001
1211
+ - type: ndcg_at_10
1212
+ value: 38.792
1213
+ - type: ndcg_at_100
1214
+ value: 43.889
1215
+ - type: ndcg_at_1000
1216
+ value: 51.561
1217
+ - type: ndcg_at_3
1218
+ value: 42.686
1219
+ - type: ndcg_at_5
1220
+ value: 40.722
1221
+ - type: precision_at_1
1222
+ value: 63.74999999999999
1223
+ - type: precision_at_10
1224
+ value: 30.375000000000004
1225
+ - type: precision_at_100
1226
+ value: 10.103
1227
+ - type: precision_at_1000
1228
+ value: 2.257
1229
+ - type: precision_at_3
1230
+ value: 45.167
1231
+ - type: precision_at_5
1232
+ value: 38.95
1233
+ - type: recall_at_1
1234
+ value: 8.48
1235
+ - type: recall_at_10
1236
+ value: 23.008
1237
+ - type: recall_at_100
1238
+ value: 48.875
1239
+ - type: recall_at_1000
1240
+ value: 73.402
1241
+ - type: recall_at_3
1242
+ value: 14.377
1243
+ - type: recall_at_5
1244
+ value: 17.819
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 47.605
1256
+ - type: f1
1257
+ value: 42.345081371303316
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 62.247
1269
+ - type: map_at_10
1270
+ value: 72.782
1271
+ - type: map_at_100
1272
+ value: 73.095
1273
+ - type: map_at_1000
1274
+ value: 73.112
1275
+ - type: map_at_3
1276
+ value: 70.928
1277
+ - type: map_at_5
1278
+ value: 72.173
1279
+ - type: mrr_at_1
1280
+ value: 67.372
1281
+ - type: mrr_at_10
1282
+ value: 77.538
1283
+ - type: mrr_at_100
1284
+ value: 77.741
1285
+ - type: mrr_at_1000
1286
+ value: 77.74600000000001
1287
+ - type: mrr_at_3
1288
+ value: 75.938
1289
+ - type: mrr_at_5
1290
+ value: 77.054
1291
+ - type: ndcg_at_1
1292
+ value: 67.372
1293
+ - type: ndcg_at_10
1294
+ value: 78.001
1295
+ - type: ndcg_at_100
1296
+ value: 79.295
1297
+ - type: ndcg_at_1000
1298
+ value: 79.648
1299
+ - type: ndcg_at_3
1300
+ value: 74.71
1301
+ - type: ndcg_at_5
1302
+ value: 76.712
1303
+ - type: precision_at_1
1304
+ value: 67.372
1305
+ - type: precision_at_10
1306
+ value: 9.844999999999999
1307
+ - type: precision_at_100
1308
+ value: 1.065
1309
+ - type: precision_at_1000
1310
+ value: 0.11100000000000002
1311
+ - type: precision_at_3
1312
+ value: 29.308
1313
+ - type: precision_at_5
1314
+ value: 18.731
1315
+ - type: recall_at_1
1316
+ value: 62.247
1317
+ - type: recall_at_10
1318
+ value: 89.453
1319
+ - type: recall_at_100
1320
+ value: 94.998
1321
+ - type: recall_at_1000
1322
+ value: 97.385
1323
+ - type: recall_at_3
1324
+ value: 80.563
1325
+ - type: recall_at_5
1326
+ value: 85.58099999999999
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 22.587
1338
+ - type: map_at_10
1339
+ value: 37.316
1340
+ - type: map_at_100
1341
+ value: 39.542
1342
+ - type: map_at_1000
1343
+ value: 39.701
1344
+ - type: map_at_3
1345
+ value: 32.332
1346
+ - type: map_at_5
1347
+ value: 35.172
1348
+ - type: mrr_at_1
1349
+ value: 42.437999999999995
1350
+ - type: mrr_at_10
1351
+ value: 51.98500000000001
1352
+ - type: mrr_at_100
1353
+ value: 52.910999999999994
1354
+ - type: mrr_at_1000
1355
+ value: 52.944
1356
+ - type: mrr_at_3
1357
+ value: 49.691
1358
+ - type: mrr_at_5
1359
+ value: 51.15
1360
+ - type: ndcg_at_1
1361
+ value: 42.437999999999995
1362
+ - type: ndcg_at_10
1363
+ value: 45.016
1364
+ - type: ndcg_at_100
1365
+ value: 52.541000000000004
1366
+ - type: ndcg_at_1000
1367
+ value: 54.99699999999999
1368
+ - type: ndcg_at_3
1369
+ value: 41.175
1370
+ - type: ndcg_at_5
1371
+ value: 42.647
1372
+ - type: precision_at_1
1373
+ value: 42.437999999999995
1374
+ - type: precision_at_10
1375
+ value: 12.855
1376
+ - type: precision_at_100
1377
+ value: 2.049
1378
+ - type: precision_at_1000
1379
+ value: 0.247
1380
+ - type: precision_at_3
1381
+ value: 27.675
1382
+ - type: precision_at_5
1383
+ value: 20.617
1384
+ - type: recall_at_1
1385
+ value: 22.587
1386
+ - type: recall_at_10
1387
+ value: 51.547
1388
+ - type: recall_at_100
1389
+ value: 78.88
1390
+ - type: recall_at_1000
1391
+ value: 93.741
1392
+ - type: recall_at_3
1393
+ value: 37.256
1394
+ - type: recall_at_5
1395
+ value: 44.295
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 32.451
1407
+ - type: map_at_10
1408
+ value: 48.082
1409
+ - type: map_at_100
1410
+ value: 49.08
1411
+ - type: map_at_1000
1412
+ value: 49.163000000000004
1413
+ - type: map_at_3
1414
+ value: 44.766
1415
+ - type: map_at_5
1416
+ value: 46.722
1417
+ - type: mrr_at_1
1418
+ value: 64.902
1419
+ - type: mrr_at_10
1420
+ value: 72.195
1421
+ - type: mrr_at_100
1422
+ value: 72.572
1423
+ - type: mrr_at_1000
1424
+ value: 72.589
1425
+ - type: mrr_at_3
1426
+ value: 70.774
1427
+ - type: mrr_at_5
1428
+ value: 71.611
1429
+ - type: ndcg_at_1
1430
+ value: 64.902
1431
+ - type: ndcg_at_10
1432
+ value: 57.14399999999999
1433
+ - type: ndcg_at_100
1434
+ value: 60.916000000000004
1435
+ - type: ndcg_at_1000
1436
+ value: 62.649
1437
+ - type: ndcg_at_3
1438
+ value: 52.09
1439
+ - type: ndcg_at_5
1440
+ value: 54.70399999999999
1441
+ - type: precision_at_1
1442
+ value: 64.902
1443
+ - type: precision_at_10
1444
+ value: 12.136
1445
+ - type: precision_at_100
1446
+ value: 1.51
1447
+ - type: precision_at_1000
1448
+ value: 0.174
1449
+ - type: precision_at_3
1450
+ value: 32.933
1451
+ - type: precision_at_5
1452
+ value: 21.823
1453
+ - type: recall_at_1
1454
+ value: 32.451
1455
+ - type: recall_at_10
1456
+ value: 60.682
1457
+ - type: recall_at_100
1458
+ value: 75.523
1459
+ - type: recall_at_1000
1460
+ value: 87.063
1461
+ - type: recall_at_3
1462
+ value: 49.399
1463
+ - type: recall_at_5
1464
+ value: 54.55799999999999
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 89.48759999999997
1476
+ - type: ap
1477
+ value: 85.15533983465178
1478
+ - type: f1
1479
+ value: 89.46732838870311
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 17.942
1491
+ - type: map_at_10
1492
+ value: 29.755
1493
+ - type: map_at_100
1494
+ value: 31.008000000000003
1495
+ - type: map_at_1000
1496
+ value: 31.067
1497
+ - type: map_at_3
1498
+ value: 25.959
1499
+ - type: map_at_5
1500
+ value: 28.044999999999998
1501
+ - type: mrr_at_1
1502
+ value: 18.467
1503
+ - type: mrr_at_10
1504
+ value: 30.253000000000004
1505
+ - type: mrr_at_100
1506
+ value: 31.461
1507
+ - type: mrr_at_1000
1508
+ value: 31.513
1509
+ - type: mrr_at_3
1510
+ value: 26.528000000000002
1511
+ - type: mrr_at_5
1512
+ value: 28.588
1513
+ - type: ndcg_at_1
1514
+ value: 18.467
1515
+ - type: ndcg_at_10
1516
+ value: 36.510999999999996
1517
+ - type: ndcg_at_100
1518
+ value: 42.748999999999995
1519
+ - type: ndcg_at_1000
1520
+ value: 44.188
1521
+ - type: ndcg_at_3
1522
+ value: 28.752
1523
+ - type: ndcg_at_5
1524
+ value: 32.462
1525
+ - type: precision_at_1
1526
+ value: 18.467
1527
+ - type: precision_at_10
1528
+ value: 6.006
1529
+ - type: precision_at_100
1530
+ value: 0.9169999999999999
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 12.55
1535
+ - type: precision_at_5
1536
+ value: 9.395000000000001
1537
+ - type: recall_at_1
1538
+ value: 17.942
1539
+ - type: recall_at_10
1540
+ value: 57.440000000000005
1541
+ - type: recall_at_100
1542
+ value: 86.66199999999999
1543
+ - type: recall_at_1000
1544
+ value: 97.613
1545
+ - type: recall_at_3
1546
+ value: 36.271
1547
+ - type: recall_at_5
1548
+ value: 45.167
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 20.503875968992244
1560
+ - type: f1
1561
+ value: 13.560556256747041
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 1.5868673050615598
1573
+ - type: f1
1574
+ value: 0.07893368834661864
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 1.815736381977135
1586
+ - type: f1
1587
+ value: 0.07389251629624266
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 7.89172831203766
1599
+ - type: f1
1600
+ value: 0.8047482245600247
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 33.88016176143737
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 32.07643038274053
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.81344342001539
1634
+ - type: mrr
1635
+ value: 31.82078962760685
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 4.617
1647
+ - type: map_at_10
1648
+ value: 11.501
1649
+ - type: map_at_100
1650
+ value: 14.729999999999999
1651
+ - type: map_at_1000
1652
+ value: 16.209
1653
+ - type: map_at_3
1654
+ value: 8.275
1655
+ - type: map_at_5
1656
+ value: 9.853000000000002
1657
+ - type: mrr_at_1
1658
+ value: 41.486000000000004
1659
+ - type: mrr_at_10
1660
+ value: 51.471999999999994
1661
+ - type: mrr_at_100
1662
+ value: 52.020999999999994
1663
+ - type: mrr_at_1000
1664
+ value: 52.066
1665
+ - type: mrr_at_3
1666
+ value: 49.484
1667
+ - type: mrr_at_5
1668
+ value: 50.660000000000004
1669
+ - type: ndcg_at_1
1670
+ value: 38.854
1671
+ - type: ndcg_at_10
1672
+ value: 31.567
1673
+ - type: ndcg_at_100
1674
+ value: 29.842999999999996
1675
+ - type: ndcg_at_1000
1676
+ value: 38.995000000000005
1677
+ - type: ndcg_at_3
1678
+ value: 36.785000000000004
1679
+ - type: ndcg_at_5
1680
+ value: 34.955000000000005
1681
+ - type: precision_at_1
1682
+ value: 40.867
1683
+ - type: precision_at_10
1684
+ value: 23.591
1685
+ - type: precision_at_100
1686
+ value: 7.771
1687
+ - type: precision_at_1000
1688
+ value: 2.11
1689
+ - type: precision_at_3
1690
+ value: 35.397
1691
+ - type: precision_at_5
1692
+ value: 30.959999999999997
1693
+ - type: recall_at_1
1694
+ value: 4.617
1695
+ - type: recall_at_10
1696
+ value: 15.609
1697
+ - type: recall_at_100
1698
+ value: 31.313999999999997
1699
+ - type: recall_at_1000
1700
+ value: 63.085
1701
+ - type: recall_at_3
1702
+ value: 9.746
1703
+ - type: recall_at_5
1704
+ value: 12.295
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 28.797
1716
+ - type: map_at_10
1717
+ value: 44.822
1718
+ - type: map_at_100
1719
+ value: 45.891999999999996
1720
+ - type: map_at_1000
1721
+ value: 45.919
1722
+ - type: map_at_3
1723
+ value: 40.237
1724
+ - type: map_at_5
1725
+ value: 42.913000000000004
1726
+ - type: mrr_at_1
1727
+ value: 32.561
1728
+ - type: mrr_at_10
1729
+ value: 46.982
1730
+ - type: mrr_at_100
1731
+ value: 47.827
1732
+ - type: mrr_at_1000
1733
+ value: 47.843999999999994
1734
+ - type: mrr_at_3
1735
+ value: 43.26
1736
+ - type: mrr_at_5
1737
+ value: 45.527
1738
+ - type: ndcg_at_1
1739
+ value: 32.532
1740
+ - type: ndcg_at_10
1741
+ value: 52.832
1742
+ - type: ndcg_at_100
1743
+ value: 57.343999999999994
1744
+ - type: ndcg_at_1000
1745
+ value: 57.93899999999999
1746
+ - type: ndcg_at_3
1747
+ value: 44.246
1748
+ - type: ndcg_at_5
1749
+ value: 48.698
1750
+ - type: precision_at_1
1751
+ value: 32.532
1752
+ - type: precision_at_10
1753
+ value: 9.003
1754
+ - type: precision_at_100
1755
+ value: 1.1480000000000001
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 20.605999999999998
1760
+ - type: precision_at_5
1761
+ value: 14.954
1762
+ - type: recall_at_1
1763
+ value: 28.797
1764
+ - type: recall_at_10
1765
+ value: 75.065
1766
+ - type: recall_at_100
1767
+ value: 94.6
1768
+ - type: recall_at_1000
1769
+ value: 98.967
1770
+ - type: recall_at_3
1771
+ value: 52.742
1772
+ - type: recall_at_5
1773
+ value: 63.012
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 69.84700000000001
1785
+ - type: map_at_10
1786
+ value: 83.91499999999999
1787
+ - type: map_at_100
1788
+ value: 84.568
1789
+ - type: map_at_1000
1790
+ value: 84.584
1791
+ - type: map_at_3
1792
+ value: 80.87299999999999
1793
+ - type: map_at_5
1794
+ value: 82.76299999999999
1795
+ - type: mrr_at_1
1796
+ value: 80.4
1797
+ - type: mrr_at_10
1798
+ value: 86.843
1799
+ - type: mrr_at_100
1800
+ value: 86.956
1801
+ - type: mrr_at_1000
1802
+ value: 86.957
1803
+ - type: mrr_at_3
1804
+ value: 85.843
1805
+ - type: mrr_at_5
1806
+ value: 86.521
1807
+ - type: ndcg_at_1
1808
+ value: 80.4
1809
+ - type: ndcg_at_10
1810
+ value: 87.787
1811
+ - type: ndcg_at_100
1812
+ value: 89.039
1813
+ - type: ndcg_at_1000
1814
+ value: 89.137
1815
+ - type: ndcg_at_3
1816
+ value: 84.76700000000001
1817
+ - type: ndcg_at_5
1818
+ value: 86.413
1819
+ - type: precision_at_1
1820
+ value: 80.4
1821
+ - type: precision_at_10
1822
+ value: 13.391
1823
+ - type: precision_at_100
1824
+ value: 1.533
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 37.123
1829
+ - type: precision_at_5
1830
+ value: 24.462
1831
+ - type: recall_at_1
1832
+ value: 69.84700000000001
1833
+ - type: recall_at_10
1834
+ value: 95.296
1835
+ - type: recall_at_100
1836
+ value: 99.543
1837
+ - type: recall_at_1000
1838
+ value: 99.98700000000001
1839
+ - type: recall_at_3
1840
+ value: 86.75
1841
+ - type: recall_at_5
1842
+ value: 91.33099999999999
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 54.24501738730203
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 61.28243705082983
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 3.473
1876
+ - type: map_at_10
1877
+ value: 8.944
1878
+ - type: map_at_100
1879
+ value: 11.21
1880
+ - type: map_at_1000
1881
+ value: 11.601
1882
+ - type: map_at_3
1883
+ value: 6.167
1884
+ - type: map_at_5
1885
+ value: 7.438000000000001
1886
+ - type: mrr_at_1
1887
+ value: 17.1
1888
+ - type: mrr_at_10
1889
+ value: 26.487
1890
+ - type: mrr_at_100
1891
+ value: 27.888
1892
+ - type: mrr_at_1000
1893
+ value: 27.961000000000002
1894
+ - type: mrr_at_3
1895
+ value: 23.25
1896
+ - type: mrr_at_5
1897
+ value: 24.91
1898
+ - type: ndcg_at_1
1899
+ value: 17.1
1900
+ - type: ndcg_at_10
1901
+ value: 15.615000000000002
1902
+ - type: ndcg_at_100
1903
+ value: 24.667
1904
+ - type: ndcg_at_1000
1905
+ value: 31.467
1906
+ - type: ndcg_at_3
1907
+ value: 14.035
1908
+ - type: ndcg_at_5
1909
+ value: 12.443
1910
+ - type: precision_at_1
1911
+ value: 17.1
1912
+ - type: precision_at_10
1913
+ value: 8.4
1914
+ - type: precision_at_100
1915
+ value: 2.149
1916
+ - type: precision_at_1000
1917
+ value: 0.378
1918
+ - type: precision_at_3
1919
+ value: 13.200000000000001
1920
+ - type: precision_at_5
1921
+ value: 11.06
1922
+ - type: recall_at_1
1923
+ value: 3.473
1924
+ - type: recall_at_10
1925
+ value: 17.087
1926
+ - type: recall_at_100
1927
+ value: 43.641999999999996
1928
+ - type: recall_at_1000
1929
+ value: 76.7
1930
+ - type: recall_at_3
1931
+ value: 8.037999999999998
1932
+ - type: recall_at_5
1933
+ value: 11.232000000000001
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 86.07032781899852
1945
+ - type: cos_sim_spearman
1946
+ value: 81.86668245459153
1947
+ - type: euclidean_pearson
1948
+ value: 83.75572948495356
1949
+ - type: euclidean_spearman
1950
+ value: 81.88575221829207
1951
+ - type: manhattan_pearson
1952
+ value: 83.73171218997966
1953
+ - type: manhattan_spearman
1954
+ value: 81.85928771458329
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 80.29008828604368
1966
+ - type: cos_sim_spearman
1967
+ value: 70.7510437896188
1968
+ - type: euclidean_pearson
1969
+ value: 76.65867322096001
1970
+ - type: euclidean_spearman
1971
+ value: 70.53984435296805
1972
+ - type: manhattan_pearson
1973
+ value: 76.6398826461678
1974
+ - type: manhattan_spearman
1975
+ value: 70.55153706770477
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 83.55610063096913
1987
+ - type: cos_sim_spearman
1988
+ value: 84.36676850545378
1989
+ - type: euclidean_pearson
1990
+ value: 82.81438612985889
1991
+ - type: euclidean_spearman
1992
+ value: 84.182693686057
1993
+ - type: manhattan_pearson
1994
+ value: 82.8355239074719
1995
+ - type: manhattan_spearman
1996
+ value: 84.19280249146543
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 78.94275022740113
2008
+ - type: cos_sim_spearman
2009
+ value: 74.50851813226338
2010
+ - type: euclidean_pearson
2011
+ value: 77.30867917552419
2012
+ - type: euclidean_spearman
2013
+ value: 74.55661368823343
2014
+ - type: manhattan_pearson
2015
+ value: 77.31883134876524
2016
+ - type: manhattan_spearman
2017
+ value: 74.58999819014154
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 85.62907185533146
2029
+ - type: cos_sim_spearman
2030
+ value: 86.40667080261993
2031
+ - type: euclidean_pearson
2032
+ value: 85.15184748925726
2033
+ - type: euclidean_spearman
2034
+ value: 86.33853519247509
2035
+ - type: manhattan_pearson
2036
+ value: 85.21542426870172
2037
+ - type: manhattan_spearman
2038
+ value: 86.4076178438401
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 83.42449758804275
2050
+ - type: cos_sim_spearman
2051
+ value: 84.7411616479609
2052
+ - type: euclidean_pearson
2053
+ value: 83.56616729612806
2054
+ - type: euclidean_spearman
2055
+ value: 84.44493050289694
2056
+ - type: manhattan_pearson
2057
+ value: 83.50906591764574
2058
+ - type: manhattan_spearman
2059
+ value: 84.39704993090794
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 88.84843806728331
2071
+ - type: cos_sim_spearman
2072
+ value: 89.03139214250334
2073
+ - type: euclidean_pearson
2074
+ value: 89.63615835813032
2075
+ - type: euclidean_spearman
2076
+ value: 89.33022202130817
2077
+ - type: manhattan_pearson
2078
+ value: 89.67071925715891
2079
+ - type: manhattan_spearman
2080
+ value: 89.29339683171531
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 65.65559857216783
2092
+ - type: cos_sim_spearman
2093
+ value: 65.86805861979079
2094
+ - type: euclidean_pearson
2095
+ value: 66.69697475461513
2096
+ - type: euclidean_spearman
2097
+ value: 66.07735691378713
2098
+ - type: manhattan_pearson
2099
+ value: 66.63427637906918
2100
+ - type: manhattan_spearman
2101
+ value: 65.95720565040364
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 86.06435608928308
2113
+ - type: cos_sim_spearman
2114
+ value: 86.46139340079428
2115
+ - type: euclidean_pearson
2116
+ value: 86.4874804471064
2117
+ - type: euclidean_spearman
2118
+ value: 86.19390771731406
2119
+ - type: manhattan_pearson
2120
+ value: 86.51184704840284
2121
+ - type: manhattan_spearman
2122
+ value: 86.19094101171963
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 85.10723925640346
2134
+ - type: mrr
2135
+ value: 95.62579305226365
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 56.233
2147
+ - type: map_at_10
2148
+ value: 64.94
2149
+ - type: map_at_100
2150
+ value: 65.508
2151
+ - type: map_at_1000
2152
+ value: 65.537
2153
+ - type: map_at_3
2154
+ value: 62.121
2155
+ - type: map_at_5
2156
+ value: 63.92400000000001
2157
+ - type: mrr_at_1
2158
+ value: 58.667
2159
+ - type: mrr_at_10
2160
+ value: 66.352
2161
+ - type: mrr_at_100
2162
+ value: 66.751
2163
+ - type: mrr_at_1000
2164
+ value: 66.777
2165
+ - type: mrr_at_3
2166
+ value: 64.22200000000001
2167
+ - type: mrr_at_5
2168
+ value: 65.656
2169
+ - type: ndcg_at_1
2170
+ value: 58.667
2171
+ - type: ndcg_at_10
2172
+ value: 69.318
2173
+ - type: ndcg_at_100
2174
+ value: 71.822
2175
+ - type: ndcg_at_1000
2176
+ value: 72.578
2177
+ - type: ndcg_at_3
2178
+ value: 64.532
2179
+ - type: ndcg_at_5
2180
+ value: 67.292
2181
+ - type: precision_at_1
2182
+ value: 58.667
2183
+ - type: precision_at_10
2184
+ value: 9.133
2185
+ - type: precision_at_100
2186
+ value: 1.05
2187
+ - type: precision_at_1000
2188
+ value: 0.11199999999999999
2189
+ - type: precision_at_3
2190
+ value: 24.889
2191
+ - type: precision_at_5
2192
+ value: 16.733
2193
+ - type: recall_at_1
2194
+ value: 56.233
2195
+ - type: recall_at_10
2196
+ value: 81.206
2197
+ - type: recall_at_100
2198
+ value: 92.80000000000001
2199
+ - type: recall_at_1000
2200
+ value: 98.667
2201
+ - type: recall_at_3
2202
+ value: 68.672
2203
+ - type: recall_at_5
2204
+ value: 75.378
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.01089108910891
2216
+ - type: cos_sim_ap
2217
+ value: 1.3258822225796068
2218
+ - type: cos_sim_f1
2219
+ value: 2.981148619026743
2220
+ - type: cos_sim_precision
2221
+ value: 2.6541764246682282
2222
+ - type: cos_sim_recall
2223
+ value: 3.4000000000000004
2224
+ - type: dot_accuracy
2225
+ value: 99.0089108910891
2226
+ - type: dot_ap
2227
+ value: 1.3780579724370194
2228
+ - type: dot_f1
2229
+ value: 2.9675425038639873
2230
+ - type: dot_precision
2231
+ value: 2.1476510067114094
2232
+ - type: dot_recall
2233
+ value: 4.8
2234
+ - type: euclidean_accuracy
2235
+ value: 99.01089108910891
2236
+ - type: euclidean_ap
2237
+ value: 1.3226816682194076
2238
+ - type: euclidean_f1
2239
+ value: 2.9817780231916067
2240
+ - type: euclidean_precision
2241
+ value: 2.059496567505721
2242
+ - type: euclidean_recall
2243
+ value: 5.4
2244
+ - type: manhattan_accuracy
2245
+ value: 99.01089108910891
2246
+ - type: manhattan_ap
2247
+ value: 1.3257832418895792
2248
+ - type: manhattan_f1
2249
+ value: 3.0476190476190474
2250
+ - type: manhattan_precision
2251
+ value: 2.909090909090909
2252
+ - type: manhattan_recall
2253
+ value: 3.2
2254
+ - type: max_accuracy
2255
+ value: 99.01089108910891
2256
+ - type: max_ap
2257
+ value: 1.3780579724370194
2258
+ - type: max_f1
2259
+ value: 3.0476190476190474
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 64.69564559409538
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 34.23127531581388
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 49.845357053686975
2293
+ - type: mrr
2294
+ value: 50.59803656311009
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 29.02241691876377
2306
+ - type: cos_sim_spearman
2307
+ value: 29.017719340560923
2308
+ - type: dot_pearson
2309
+ value: 29.59373129445045
2310
+ - type: dot_spearman
2311
+ value: 29.616196388331968
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.157
2323
+ - type: map_at_10
2324
+ value: 0.9440000000000001
2325
+ - type: map_at_100
2326
+ value: 4.61
2327
+ - type: map_at_1000
2328
+ value: 11.488
2329
+ - type: map_at_3
2330
+ value: 0.396
2331
+ - type: map_at_5
2332
+ value: 0.569
2333
+ - type: mrr_at_1
2334
+ value: 57.99999999999999
2335
+ - type: mrr_at_10
2336
+ value: 71.672
2337
+ - type: mrr_at_100
2338
+ value: 71.707
2339
+ - type: mrr_at_1000
2340
+ value: 71.707
2341
+ - type: mrr_at_3
2342
+ value: 68.333
2343
+ - type: mrr_at_5
2344
+ value: 70.533
2345
+ - type: ndcg_at_1
2346
+ value: 54.0
2347
+ - type: ndcg_at_10
2348
+ value: 45.216
2349
+ - type: ndcg_at_100
2350
+ value: 32.623999999999995
2351
+ - type: ndcg_at_1000
2352
+ value: 33.006
2353
+ - type: ndcg_at_3
2354
+ value: 51.76500000000001
2355
+ - type: ndcg_at_5
2356
+ value: 47.888999999999996
2357
+ - type: precision_at_1
2358
+ value: 57.99999999999999
2359
+ - type: precision_at_10
2360
+ value: 48.0
2361
+ - type: precision_at_100
2362
+ value: 32.74
2363
+ - type: precision_at_1000
2364
+ value: 14.588000000000001
2365
+ - type: precision_at_3
2366
+ value: 55.333
2367
+ - type: precision_at_5
2368
+ value: 51.2
2369
+ - type: recall_at_1
2370
+ value: 0.157
2371
+ - type: recall_at_10
2372
+ value: 1.212
2373
+ - type: recall_at_100
2374
+ value: 7.868
2375
+ - type: recall_at_1000
2376
+ value: 31.583
2377
+ - type: recall_at_3
2378
+ value: 0.443
2379
+ - type: recall_at_5
2380
+ value: 0.6779999999999999
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 1.545
2392
+ - type: map_at_10
2393
+ value: 4.6690000000000005
2394
+ - type: map_at_100
2395
+ value: 8.982
2396
+ - type: map_at_1000
2397
+ value: 10.453999999999999
2398
+ - type: map_at_3
2399
+ value: 2.35
2400
+ - type: map_at_5
2401
+ value: 3.168
2402
+ - type: mrr_at_1
2403
+ value: 18.367
2404
+ - type: mrr_at_10
2405
+ value: 28.599999999999998
2406
+ - type: mrr_at_100
2407
+ value: 30.287
2408
+ - type: mrr_at_1000
2409
+ value: 30.339
2410
+ - type: mrr_at_3
2411
+ value: 24.490000000000002
2412
+ - type: mrr_at_5
2413
+ value: 27.040999999999997
2414
+ - type: ndcg_at_1
2415
+ value: 17.347
2416
+ - type: ndcg_at_10
2417
+ value: 13.868
2418
+ - type: ndcg_at_100
2419
+ value: 25.499
2420
+ - type: ndcg_at_1000
2421
+ value: 37.922
2422
+ - type: ndcg_at_3
2423
+ value: 13.746
2424
+ - type: ndcg_at_5
2425
+ value: 13.141
2426
+ - type: precision_at_1
2427
+ value: 18.367
2428
+ - type: precision_at_10
2429
+ value: 12.653
2430
+ - type: precision_at_100
2431
+ value: 5.776
2432
+ - type: precision_at_1000
2433
+ value: 1.3860000000000001
2434
+ - type: precision_at_3
2435
+ value: 13.605
2436
+ - type: precision_at_5
2437
+ value: 13.061
2438
+ - type: recall_at_1
2439
+ value: 1.545
2440
+ - type: recall_at_10
2441
+ value: 9.305
2442
+ - type: recall_at_100
2443
+ value: 38.084
2444
+ - type: recall_at_1000
2445
+ value: 75.897
2446
+ - type: recall_at_3
2447
+ value: 2.903
2448
+ - type: recall_at_5
2449
+ value: 4.8919999999999995
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 71.23839999999998
2461
+ - type: ap
2462
+ value: 14.810293385203243
2463
+ - type: f1
2464
+ value: 55.08401453918053
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 58.21448783248444
2476
+ - type: f1
2477
+ value: 58.57246320620639
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 49.314744135178934
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 77.63008881206413
2500
+ - type: cos_sim_ap
2501
+ value: 23.98771112381251
2502
+ - type: cos_sim_f1
2503
+ value: 36.874665107896156
2504
+ - type: cos_sim_precision
2505
+ value: 22.61186450803513
2506
+ - type: cos_sim_recall
2507
+ value: 99.86807387862797
2508
+ - type: dot_accuracy
2509
+ value: 77.624128270847
2510
+ - type: dot_ap
2511
+ value: 23.81883137521807
2512
+ - type: dot_f1
2513
+ value: 36.86411827643225
2514
+ - type: dot_precision
2515
+ value: 22.59718578583353
2516
+ - type: dot_recall
2517
+ value: 100.0
2518
+ - type: euclidean_accuracy
2519
+ value: 77.63008881206413
2520
+ - type: euclidean_ap
2521
+ value: 24.056639112615873
2522
+ - type: euclidean_f1
2523
+ value: 36.8782579042237
2524
+ - type: euclidean_precision
2525
+ value: 22.61456652924658
2526
+ - type: euclidean_recall
2527
+ value: 99.86807387862797
2528
+ - type: manhattan_accuracy
2529
+ value: 77.63604935328128
2530
+ - type: manhattan_ap
2531
+ value: 24.040167793537755
2532
+ - type: manhattan_f1
2533
+ value: 36.86514886164623
2534
+ - type: manhattan_precision
2535
+ value: 22.59930812358344
2536
+ - type: manhattan_recall
2537
+ value: 99.9736147757256
2538
+ - type: max_accuracy
2539
+ value: 77.63604935328128
2540
+ - type: max_ap
2541
+ value: 24.056639112615873
2542
+ - type: max_f1
2543
+ value: 36.8782579042237
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 75.04366049598323
2555
+ - type: cos_sim_ap
2556
+ value: 26.157700936768393
2557
+ - type: cos_sim_f1
2558
+ value: 40.26479388555571
2559
+ - type: cos_sim_precision
2560
+ value: 25.20819178879938
2561
+ - type: cos_sim_recall
2562
+ value: 99.98460117031107
2563
+ - type: dot_accuracy
2564
+ value: 75.01843443163737
2565
+ - type: dot_ap
2566
+ value: 26.007081173722646
2567
+ - type: dot_f1
2568
+ value: 40.267311687908965
2569
+ - type: dot_precision
2570
+ value: 25.210655069312317
2571
+ - type: dot_recall
2572
+ value: 99.97690175546659
2573
+ - type: euclidean_accuracy
2574
+ value: 75.04366049598323
2575
+ - type: euclidean_ap
2576
+ value: 26.208660893446407
2577
+ - type: euclidean_f1
2578
+ value: 40.264773361443545
2579
+ - type: euclidean_precision
2580
+ value: 25.20768633540373
2581
+ - type: euclidean_recall
2582
+ value: 99.99230058515552
2583
+ - type: manhattan_accuracy
2584
+ value: 75.04754142895952
2585
+ - type: manhattan_ap
2586
+ value: 26.202762141501218
2587
+ - type: manhattan_f1
2588
+ value: 40.262358121937595
2589
+ - type: manhattan_precision
2590
+ value: 25.20775085430258
2591
+ - type: manhattan_recall
2592
+ value: 99.96150292577765
2593
+ - type: max_accuracy
2594
+ value: 75.04754142895952
2595
+ - type: max_ap
2596
+ value: 26.208660893446407
2597
+ - type: max_f1
2598
+ value: 40.267311687908965
2599
+ ---