# Model Configuration | |
model_name: /large-storage/model/deberta-v3-large # Hugging Face model | |
labels_encoder: null | |
name: "span level gliner" | |
max_width: 12 | |
hidden_size: 512 | |
dropout: 0.4 | |
fine_tune: true | |
subtoken_pooling: first | |
span_mode: markerV0 | |
# Training Parameters | |
num_steps: 10000 | |
train_batch_size: 8 | |
eval_every: 1000 | |
warmup_ratio: 0.1 | |
scheduler_type: "cosine" | |
# loss function | |
loss_alpha: -1 # focal loss alpha, if -1, no focal loss | |
loss_gamma: 0 # focal loss gamma, if 0, no focal loss | |
label_smoothing: 0 | |
loss_reduction: "sum" | |
# Learning Rate and weight decay Configuration | |
lr_encoder: 1e-5 | |
lr_others: 5e-5 | |
weight_decay_encoder: 0.01 | |
weight_decay_other: 0.01 | |
max_grad_norm: 1.0 | |
# Directory Paths | |
root_dir: span_gliner_logs | |
train_data: "data/pilener_train.json" # see https://github.com/urchade/GLiNER/tree/main/data | |
val_data_dir: "/workspace/GNER/regen_data/data/IE_INSTRUCTIONS/NER copy" | |
# "NER_datasets": val data from the paper can be obtained from "https://drive.google.com/file/d/1T-5IbocGka35I7X3CE6yKe5N_Xg2lVKT/view" | |
# Pretrained Model Path | |
# Use "none" if no pretrained model is being used | |
prev_path: null | |
save_total_limit: 10 #maximum amount of checkpoints to save | |
# Advanced Training Settings | |
size_sup: -1 | |
max_types: 25 | |
shuffle_types: true | |
random_drop: true | |
max_neg_type_ratio: 1 | |
max_len: 512 | |
freeze_token_rep: false | |