Commit
·
ca32d55
1
Parent(s):
41fc0e9
initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- base/decoder_first.mlmodelc/analytics/coremldata.bin +3 -0
- base/decoder_first.mlmodelc/coremldata.bin +3 -0
- base/decoder_first.mlmodelc/metadata.json +106 -0
- base/decoder_first.mlmodelc/model.mil +369 -0
- base/decoder_first.mlmodelc/weights/weight.bin +3 -0
- base/decoder_second.mlmodelc/analytics/coremldata.bin +3 -0
- base/decoder_second.mlmodelc/coremldata.bin +3 -0
- base/decoder_second.mlmodelc/metadata.json +127 -0
- base/decoder_second.mlmodelc/model.mil +0 -0
- base/decoder_second.mlmodelc/weights/weight.bin +3 -0
- base/encoder.mlmodelc/analytics/coremldata.bin +3 -0
- base/encoder.mlmodelc/coremldata.bin +3 -0
- base/encoder.mlmodelc/metadata.json +69 -0
- base/encoder.mlmodelc/model.mil +384 -0
- base/encoder.mlmodelc/weights/weight.bin +3 -0
- base/model_dims.json +12 -0
- compile_model.sh +34 -0
- index/base +16 -0
- index/large-v2 +22 -0
- index/large-v3 +22 -0
- index/medium +16 -0
- index/small +16 -0
- index/tiny +16 -0
- large-v2/decoder_first.mlmodelc/analytics/coremldata.bin +3 -0
- large-v2/decoder_first.mlmodelc/coremldata.bin +3 -0
- large-v2/decoder_first.mlmodelc/metadata.json +106 -0
- large-v2/decoder_first.mlmodelc/model.mil +0 -0
- large-v2/decoder_first.mlmodelc/weights/weight.bin +3 -0
- large-v2/decoder_second.mlmodelc/analytics/coremldata.bin +3 -0
- large-v2/decoder_second.mlmodelc/coremldata.bin +3 -0
- large-v2/decoder_second.mlmodelc/metadata.json +127 -0
- large-v2/decoder_second.mlmodelc/model.mil +0 -0
- large-v2/decoder_second.mlmodelc/weights/weight.bin +3 -0
- large-v2/encoder.mlmodelc/analytics/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/metadata.json +76 -0
- large-v2/encoder.mlmodelc/model0/analytics/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/model0/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/model0/model.mil +0 -0
- large-v2/encoder.mlmodelc/model0/weights/0-weight.bin +3 -0
- large-v2/encoder.mlmodelc/model1/analytics/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/model1/coremldata.bin +3 -0
- large-v2/encoder.mlmodelc/model1/model.mil +0 -0
- large-v2/encoder.mlmodelc/model1/weights/1-weight.bin +3 -0
- large-v2/model_dims.json +12 -0
- large-v3/decoder_first.mlmodelc/analytics/coremldata.bin +3 -0
- large-v3/decoder_first.mlmodelc/coremldata.bin +3 -0
- large-v3/decoder_first.mlmodelc/metadata.json +106 -0
- large-v3/decoder_first.mlmodelc/model.mil +0 -0
- large-v3/decoder_first.mlmodelc/weights/weight.bin +3 -0
base/decoder_first.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3071377562292da4d34bf9d0ddcfe168fd10c3b81d4689d25c207179d2d58578
|
3 |
+
size 243
|
base/decoder_first.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fbe1879a296cf22a0441826a3028ae2ec63bfc8e9ff019132681d2a93610324
|
3 |
+
size 453
|
base/decoder_first.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "dummy",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.writeState" : 14,
|
23 |
+
"Shape" : 12,
|
24 |
+
"Ios18.linear" : 12,
|
25 |
+
"Identity" : 1,
|
26 |
+
"Ios18.gather" : 12,
|
27 |
+
"Ios18.concat" : 12,
|
28 |
+
"Ios18.sliceUpdate" : 14,
|
29 |
+
"Ios18.cast" : 24,
|
30 |
+
"Ios18.expandDims" : 12,
|
31 |
+
"Ios18.readState" : 14
|
32 |
+
},
|
33 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32, UInt16)",
|
34 |
+
"isUpdatable" : "0",
|
35 |
+
"stateSchema" : [
|
36 |
+
{
|
37 |
+
"dataType" : "Float16",
|
38 |
+
"isOptional" : "0",
|
39 |
+
"formattedType" : "State (Float16 6 × 1 × 448 × 512)",
|
40 |
+
"shortDescription" : "",
|
41 |
+
"shape" : "[6, 1, 448, 512]",
|
42 |
+
"name" : "k_cache1",
|
43 |
+
"type" : "State"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"dataType" : "Float16",
|
47 |
+
"isOptional" : "0",
|
48 |
+
"formattedType" : "State (Float16 6 × 1 × 448 × 512)",
|
49 |
+
"shortDescription" : "",
|
50 |
+
"shape" : "[6, 1, 448, 512]",
|
51 |
+
"name" : "v_cache1",
|
52 |
+
"type" : "State"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"dataType" : "Float16",
|
56 |
+
"isOptional" : "0",
|
57 |
+
"formattedType" : "State (Float16 6 × 1 × 1500 × 512)",
|
58 |
+
"shortDescription" : "",
|
59 |
+
"shape" : "[6, 1, 1500, 512]",
|
60 |
+
"name" : "k_cache2",
|
61 |
+
"type" : "State"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"formattedType" : "State (Float16 6 × 1 × 1500 × 512)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[6, 1, 1500, 512]",
|
69 |
+
"name" : "v_cache2",
|
70 |
+
"type" : "State"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"availability" : {
|
74 |
+
"macOS" : "15.0",
|
75 |
+
"tvOS" : "18.0",
|
76 |
+
"visionOS" : "2.0",
|
77 |
+
"watchOS" : "11.0",
|
78 |
+
"iOS" : "18.0",
|
79 |
+
"macCatalyst" : "18.0"
|
80 |
+
},
|
81 |
+
"modelType" : {
|
82 |
+
"name" : "MLModelType_mlProgram"
|
83 |
+
},
|
84 |
+
"userDefinedMetadata" : {
|
85 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
86 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
87 |
+
"com.github.apple.coremltools.version" : "8.0"
|
88 |
+
},
|
89 |
+
"inputSchema" : [
|
90 |
+
{
|
91 |
+
"dataType" : "Float16",
|
92 |
+
"hasShapeFlexibility" : "1",
|
93 |
+
"isOptional" : "0",
|
94 |
+
"shapeFlexibility" : "1 × 1...1500 × 512",
|
95 |
+
"shapeRange" : "[[1, 1], [1, 1500], [512, 512]]",
|
96 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 512)",
|
97 |
+
"type" : "MultiArray",
|
98 |
+
"shape" : "[1, 1, 512]",
|
99 |
+
"name" : "audio_data",
|
100 |
+
"shortDescription" : ""
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"generatedClassName" : "decoder_first",
|
104 |
+
"method" : "predict"
|
105 |
+
}
|
106 |
+
]
|
base/decoder_first.mlmodelc/model.mil
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.3)
|
2 |
+
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3400.43.1"}, {"coremlc-version", "3400.58.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
|
3 |
+
{
|
4 |
+
func main<ios18>(tensor<fp16, [1, ?, 512]> audio_data, state<tensor<fp16, [6, 1, 448, 512]>> k_cache1, state<tensor<fp16, [6, 1, 1500, 512]>> k_cache2, state<tensor<fp16, [6, 1, 448, 512]>> v_cache1, state<tensor<fp16, [6, 1, 1500, 512]>> v_cache2) [FlexibleShapeInformation = tuple<tuple<string, dict<string, tensor<int32, [?]>>>, tuple<string, dict<string, list<tensor<int32, [2]>, ?>>>>((("DefaultShapes", {{"audio_data", [1, 1, 512]}}), ("RangeDims", {{"audio_data", [[1, 1], [1, 1500], [512, 512]]}})))] {
|
5 |
+
tensor<fp16, [1, ?, 512]> dummy = identity(x = audio_data)[name = string("identity_0")];
|
6 |
+
tensor<fp16, [6, 1, 448, 512]> read_state_0 = read_state(input = k_cache1)[name = string("read_state_0")];
|
7 |
+
tensor<int32, [4]> concat_0 = const()[name = string("concat_0"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
8 |
+
tensor<int32, [4]> concat_1 = const()[name = string("concat_1"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
9 |
+
tensor<int32, [4]> k_cache1_internal_tensor_assign_1_stride_0 = const()[name = string("k_cache1_internal_tensor_assign_1_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
10 |
+
tensor<bool, [4]> k_cache1_internal_tensor_assign_1_begin_mask_0 = const()[name = string("k_cache1_internal_tensor_assign_1_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
11 |
+
tensor<bool, [4]> k_cache1_internal_tensor_assign_1_end_mask_0 = const()[name = string("k_cache1_internal_tensor_assign_1_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
|
12 |
+
tensor<bool, [4]> k_cache1_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("k_cache1_internal_tensor_assign_1_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
13 |
+
tensor<fp16, [6, 1, 448, 512]> const_0_to_fp16 = const()[name = string("const_0_to_fp16"), val = tensor<fp16, [6, 1, 448, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))];
|
14 |
+
tensor<fp16, [6, 1, 448, 512]> k_cache1_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_0, begin_mask = k_cache1_internal_tensor_assign_1_begin_mask_0, end = concat_1, end_mask = k_cache1_internal_tensor_assign_1_end_mask_0, squeeze_mask = k_cache1_internal_tensor_assign_1_squeeze_mask_0, stride = k_cache1_internal_tensor_assign_1_stride_0, update = const_0_to_fp16, x = read_state_0)[name = string("k_cache1_internal_tensor_assign_1_cast_fp16")];
|
15 |
+
write_state(data = k_cache1_internal_tensor_assign_1_cast_fp16, input = k_cache1)[name = string("coreml_update_state_14_write_state")];
|
16 |
+
tensor<fp16, [6, 1, 448, 512]> read_state_1 = read_state(input = v_cache1)[name = string("read_state_1")];
|
17 |
+
tensor<int32, [4]> concat_2 = const()[name = string("concat_2"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
18 |
+
tensor<int32, [4]> concat_3 = const()[name = string("concat_3"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
19 |
+
tensor<int32, [4]> v_cache1_internal_tensor_assign_1_stride_0 = const()[name = string("v_cache1_internal_tensor_assign_1_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
20 |
+
tensor<bool, [4]> v_cache1_internal_tensor_assign_1_begin_mask_0 = const()[name = string("v_cache1_internal_tensor_assign_1_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
21 |
+
tensor<bool, [4]> v_cache1_internal_tensor_assign_1_end_mask_0 = const()[name = string("v_cache1_internal_tensor_assign_1_end_mask_0"), val = tensor<bool, [4]>([true, true, true, true])];
|
22 |
+
tensor<bool, [4]> v_cache1_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("v_cache1_internal_tensor_assign_1_squeeze_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
23 |
+
tensor<fp16, [6, 1, 448, 512]> v_cache1_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_2, begin_mask = v_cache1_internal_tensor_assign_1_begin_mask_0, end = concat_3, end_mask = v_cache1_internal_tensor_assign_1_end_mask_0, squeeze_mask = v_cache1_internal_tensor_assign_1_squeeze_mask_0, stride = v_cache1_internal_tensor_assign_1_stride_0, update = const_0_to_fp16, x = read_state_1)[name = string("v_cache1_internal_tensor_assign_1_cast_fp16")];
|
24 |
+
write_state(data = v_cache1_internal_tensor_assign_1_cast_fp16, input = v_cache1)[name = string("coreml_update_state_15_write_state")];
|
25 |
+
tensor<fp16, [6, 1, 1500, 512]> read_state_2 = read_state(input = k_cache2)[name = string("read_state_2")];
|
26 |
+
tensor<fp16, [6, 1, 1500, 512]> read_state_3 = read_state(input = v_cache2)[name = string("read_state_3")];
|
27 |
+
tensor<fp16, [512, 512]> var_79_to_fp16 = const()[name = string("op_79_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(2752640)))];
|
28 |
+
tensor<fp16, [512]> linear_0_bias_0_to_fp16 = const()[name = string("linear_0_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3276992)))];
|
29 |
+
tensor<fp16, [1, ?, 512]> linear_0_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_79_to_fp16, x = audio_data)[name = string("linear_0_cast_fp16")];
|
30 |
+
tensor<fp16, [512, 512]> var_83_to_fp16 = const()[name = string("op_83_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3278080)))];
|
31 |
+
tensor<fp16, [512]> var_84_to_fp16 = const()[name = string("op_84_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3802432)))];
|
32 |
+
tensor<fp16, [1, ?, 512]> linear_1_cast_fp16 = linear(bias = var_84_to_fp16, weight = var_83_to_fp16, x = audio_data)[name = string("linear_1_cast_fp16")];
|
33 |
+
tensor<int32, [3]> var_86_shape_cast_fp16 = shape(x = linear_0_cast_fp16)[name = string("op_86_shape_cast_fp16")];
|
34 |
+
int32 gather_0_axis_0 = const()[name = string("gather_0_axis_0"), val = int32(0)];
|
35 |
+
int32 gather_0_batch_dims_0 = const()[name = string("gather_0_batch_dims_0"), val = int32(0)];
|
36 |
+
bool gather_0_validate_indices_0 = const()[name = string("gather_0_validate_indices_0"), val = bool(false)];
|
37 |
+
string var_86_shape_cast_fp16_to_int16_dtype_0 = const()[name = string("op_86_shape_cast_fp16_to_int16_dtype_0"), val = string("int16")];
|
38 |
+
uint16 select_0_to_uint16 = const()[name = string("select_0_to_uint16"), val = uint16(1)];
|
39 |
+
tensor<int16, [3]> var_86_shape_cast_fp16_to_int16 = cast(dtype = var_86_shape_cast_fp16_to_int16_dtype_0, x = var_86_shape_cast_fp16)[name = string("cast_43")];
|
40 |
+
int16 gather_0_cast_uint16 = gather(axis = gather_0_axis_0, batch_dims = gather_0_batch_dims_0, indices = select_0_to_uint16, validate_indices = gather_0_validate_indices_0, x = var_86_shape_cast_fp16_to_int16)[name = string("gather_0_cast_uint16")];
|
41 |
+
string gather_0_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_0_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
42 |
+
tensor<int32, [1]> expand_dims_11_axes_0 = const()[name = string("expand_dims_11_axes_0"), val = tensor<int32, [1]>([0])];
|
43 |
+
int32 gather_0_cast_uint16_to_int32 = cast(dtype = gather_0_cast_uint16_to_int32_dtype_0, x = gather_0_cast_uint16)[name = string("cast_42")];
|
44 |
+
tensor<int32, [1]> expand_dims_11 = expand_dims(axes = expand_dims_11_axes_0, x = gather_0_cast_uint16_to_int32)[name = string("expand_dims_11")];
|
45 |
+
tensor<int32, [4]> concat_5 = const()[name = string("concat_5"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
46 |
+
tensor<int32, [1]> concat_6_values0_0 = const()[name = string("concat_6_values0_0"), val = tensor<int32, [1]>([0])];
|
47 |
+
tensor<int32, [1]> concat_6_values1_0 = const()[name = string("concat_6_values1_0"), val = tensor<int32, [1]>([0])];
|
48 |
+
tensor<int32, [1]> concat_6_values3_0 = const()[name = string("concat_6_values3_0"), val = tensor<int32, [1]>([0])];
|
49 |
+
int32 concat_6_axis_0 = const()[name = string("concat_6_axis_0"), val = int32(0)];
|
50 |
+
bool concat_6_interleave_0 = const()[name = string("concat_6_interleave_0"), val = bool(false)];
|
51 |
+
tensor<int32, [4]> concat_6 = concat(axis = concat_6_axis_0, interleave = concat_6_interleave_0, values = (concat_6_values0_0, concat_6_values1_0, expand_dims_11, concat_6_values3_0))[name = string("concat_6")];
|
52 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_1_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_1_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
53 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_1_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_1_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
54 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_1_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_1_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
55 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_1_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
56 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_5, begin_mask = k_cache2_internal_tensor_assign_1_begin_mask_0, end = concat_6, end_mask = k_cache2_internal_tensor_assign_1_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_1_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_1_stride_0, update = linear_0_cast_fp16, x = read_state_2)[name = string("k_cache2_internal_tensor_assign_1_cast_fp16")];
|
57 |
+
write_state(data = k_cache2_internal_tensor_assign_1_cast_fp16, input = k_cache2)[name = string("coreml_update_state_16_write_state")];
|
58 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_16 = read_state(input = k_cache2)[name = string("coreml_update_state_16")];
|
59 |
+
tensor<int32, [3]> var_91_shape_cast_fp16 = shape(x = linear_1_cast_fp16)[name = string("op_91_shape_cast_fp16")];
|
60 |
+
int32 gather_1_axis_0 = const()[name = string("gather_1_axis_0"), val = int32(0)];
|
61 |
+
int32 gather_1_batch_dims_0 = const()[name = string("gather_1_batch_dims_0"), val = int32(0)];
|
62 |
+
bool gather_1_validate_indices_0 = const()[name = string("gather_1_validate_indices_0"), val = bool(false)];
|
63 |
+
string var_91_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_91_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
64 |
+
uint16 select_1_to_uint16 = const()[name = string("select_1_to_uint16"), val = uint16(1)];
|
65 |
+
tensor<uint16, [3]> var_91_shape_cast_fp16_to_uint16 = cast(dtype = var_91_shape_cast_fp16_to_uint16_dtype_0, x = var_91_shape_cast_fp16)[name = string("cast_41")];
|
66 |
+
uint16 gather_1_cast_uint16 = gather(axis = gather_1_axis_0, batch_dims = gather_1_batch_dims_0, indices = select_1_to_uint16, validate_indices = gather_1_validate_indices_0, x = var_91_shape_cast_fp16_to_uint16)[name = string("gather_1_cast_uint16")];
|
67 |
+
string gather_1_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_1_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
68 |
+
tensor<int32, [1]> expand_dims_15_axes_0 = const()[name = string("expand_dims_15_axes_0"), val = tensor<int32, [1]>([0])];
|
69 |
+
int32 gather_1_cast_uint16_to_int32 = cast(dtype = gather_1_cast_uint16_to_int32_dtype_0, x = gather_1_cast_uint16)[name = string("cast_40")];
|
70 |
+
tensor<int32, [1]> expand_dims_15 = expand_dims(axes = expand_dims_15_axes_0, x = gather_1_cast_uint16_to_int32)[name = string("expand_dims_15")];
|
71 |
+
tensor<int32, [4]> concat_8 = const()[name = string("concat_8"), val = tensor<int32, [4]>([0, 0, 0, 0])];
|
72 |
+
tensor<int32, [1]> concat_9_values0_0 = const()[name = string("concat_9_values0_0"), val = tensor<int32, [1]>([0])];
|
73 |
+
tensor<int32, [1]> concat_9_values1_0 = const()[name = string("concat_9_values1_0"), val = tensor<int32, [1]>([0])];
|
74 |
+
tensor<int32, [1]> concat_9_values3_0 = const()[name = string("concat_9_values3_0"), val = tensor<int32, [1]>([0])];
|
75 |
+
int32 concat_9_axis_0 = const()[name = string("concat_9_axis_0"), val = int32(0)];
|
76 |
+
bool concat_9_interleave_0 = const()[name = string("concat_9_interleave_0"), val = bool(false)];
|
77 |
+
tensor<int32, [4]> concat_9 = concat(axis = concat_9_axis_0, interleave = concat_9_interleave_0, values = (concat_9_values0_0, concat_9_values1_0, expand_dims_15, concat_9_values3_0))[name = string("concat_9")];
|
78 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_1_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_1_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
79 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_1_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_1_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
80 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_1_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_1_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
81 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_1_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
82 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_8, begin_mask = v_cache2_internal_tensor_assign_1_begin_mask_0, end = concat_9, end_mask = v_cache2_internal_tensor_assign_1_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_1_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_1_stride_0, update = linear_1_cast_fp16, x = read_state_3)[name = string("v_cache2_internal_tensor_assign_1_cast_fp16")];
|
83 |
+
write_state(data = v_cache2_internal_tensor_assign_1_cast_fp16, input = v_cache2)[name = string("coreml_update_state_17_write_state")];
|
84 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_17 = read_state(input = v_cache2)[name = string("coreml_update_state_17")];
|
85 |
+
tensor<fp16, [512, 512]> var_113_to_fp16 = const()[name = string("op_113_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3803520)))];
|
86 |
+
tensor<fp16, [1, ?, 512]> linear_2_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_113_to_fp16, x = audio_data)[name = string("linear_2_cast_fp16")];
|
87 |
+
tensor<fp16, [512, 512]> var_117_to_fp16 = const()[name = string("op_117_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4327872)))];
|
88 |
+
tensor<fp16, [512]> var_118_to_fp16 = const()[name = string("op_118_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4852224)))];
|
89 |
+
tensor<fp16, [1, ?, 512]> linear_3_cast_fp16 = linear(bias = var_118_to_fp16, weight = var_117_to_fp16, x = audio_data)[name = string("linear_3_cast_fp16")];
|
90 |
+
tensor<int32, [3]> var_120_shape_cast_fp16 = shape(x = linear_2_cast_fp16)[name = string("op_120_shape_cast_fp16")];
|
91 |
+
int32 gather_2_axis_0 = const()[name = string("gather_2_axis_0"), val = int32(0)];
|
92 |
+
int32 gather_2_batch_dims_0 = const()[name = string("gather_2_batch_dims_0"), val = int32(0)];
|
93 |
+
bool gather_2_validate_indices_0 = const()[name = string("gather_2_validate_indices_0"), val = bool(false)];
|
94 |
+
string var_120_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_120_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
95 |
+
uint16 select_2_to_uint16 = const()[name = string("select_2_to_uint16"), val = uint16(1)];
|
96 |
+
tensor<uint16, [3]> var_120_shape_cast_fp16_to_uint16 = cast(dtype = var_120_shape_cast_fp16_to_uint16_dtype_0, x = var_120_shape_cast_fp16)[name = string("cast_39")];
|
97 |
+
uint16 gather_2_cast_uint16 = gather(axis = gather_2_axis_0, batch_dims = gather_2_batch_dims_0, indices = select_2_to_uint16, validate_indices = gather_2_validate_indices_0, x = var_120_shape_cast_fp16_to_uint16)[name = string("gather_2_cast_uint16")];
|
98 |
+
string gather_2_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_2_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
99 |
+
tensor<int32, [1]> expand_dims_19_axes_0 = const()[name = string("expand_dims_19_axes_0"), val = tensor<int32, [1]>([0])];
|
100 |
+
int32 gather_2_cast_uint16_to_int32 = cast(dtype = gather_2_cast_uint16_to_int32_dtype_0, x = gather_2_cast_uint16)[name = string("cast_38")];
|
101 |
+
tensor<int32, [1]> expand_dims_19 = expand_dims(axes = expand_dims_19_axes_0, x = gather_2_cast_uint16_to_int32)[name = string("expand_dims_19")];
|
102 |
+
tensor<int32, [4]> concat_11 = const()[name = string("concat_11"), val = tensor<int32, [4]>([1, 0, 0, 0])];
|
103 |
+
tensor<int32, [1]> concat_12_values0_0 = const()[name = string("concat_12_values0_0"), val = tensor<int32, [1]>([0])];
|
104 |
+
tensor<int32, [1]> concat_12_values1_0 = const()[name = string("concat_12_values1_0"), val = tensor<int32, [1]>([0])];
|
105 |
+
tensor<int32, [1]> concat_12_values3_0 = const()[name = string("concat_12_values3_0"), val = tensor<int32, [1]>([0])];
|
106 |
+
int32 concat_12_axis_0 = const()[name = string("concat_12_axis_0"), val = int32(0)];
|
107 |
+
bool concat_12_interleave_0 = const()[name = string("concat_12_interleave_0"), val = bool(false)];
|
108 |
+
tensor<int32, [4]> concat_12 = concat(axis = concat_12_axis_0, interleave = concat_12_interleave_0, values = (concat_12_values0_0, concat_12_values1_0, expand_dims_19, concat_12_values3_0))[name = string("concat_12")];
|
109 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_2_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_2_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
110 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_2_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_2_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
111 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_2_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_2_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
112 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_2_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
113 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_11, begin_mask = k_cache2_internal_tensor_assign_2_begin_mask_0, end = concat_12, end_mask = k_cache2_internal_tensor_assign_2_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_2_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_2_stride_0, update = linear_2_cast_fp16, x = coreml_update_state_16)[name = string("k_cache2_internal_tensor_assign_2_cast_fp16")];
|
114 |
+
write_state(data = k_cache2_internal_tensor_assign_2_cast_fp16, input = k_cache2)[name = string("coreml_update_state_18_write_state")];
|
115 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_18 = read_state(input = k_cache2)[name = string("coreml_update_state_18")];
|
116 |
+
tensor<int32, [3]> var_125_shape_cast_fp16 = shape(x = linear_3_cast_fp16)[name = string("op_125_shape_cast_fp16")];
|
117 |
+
int32 gather_3_axis_0 = const()[name = string("gather_3_axis_0"), val = int32(0)];
|
118 |
+
int32 gather_3_batch_dims_0 = const()[name = string("gather_3_batch_dims_0"), val = int32(0)];
|
119 |
+
bool gather_3_validate_indices_0 = const()[name = string("gather_3_validate_indices_0"), val = bool(false)];
|
120 |
+
string var_125_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_125_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
121 |
+
uint16 select_3_to_uint16 = const()[name = string("select_3_to_uint16"), val = uint16(1)];
|
122 |
+
tensor<uint16, [3]> var_125_shape_cast_fp16_to_uint16 = cast(dtype = var_125_shape_cast_fp16_to_uint16_dtype_0, x = var_125_shape_cast_fp16)[name = string("cast_37")];
|
123 |
+
uint16 gather_3_cast_uint16 = gather(axis = gather_3_axis_0, batch_dims = gather_3_batch_dims_0, indices = select_3_to_uint16, validate_indices = gather_3_validate_indices_0, x = var_125_shape_cast_fp16_to_uint16)[name = string("gather_3_cast_uint16")];
|
124 |
+
string gather_3_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_3_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
125 |
+
tensor<int32, [1]> expand_dims_23_axes_0 = const()[name = string("expand_dims_23_axes_0"), val = tensor<int32, [1]>([0])];
|
126 |
+
int32 gather_3_cast_uint16_to_int32 = cast(dtype = gather_3_cast_uint16_to_int32_dtype_0, x = gather_3_cast_uint16)[name = string("cast_36")];
|
127 |
+
tensor<int32, [1]> expand_dims_23 = expand_dims(axes = expand_dims_23_axes_0, x = gather_3_cast_uint16_to_int32)[name = string("expand_dims_23")];
|
128 |
+
tensor<int32, [4]> concat_14 = const()[name = string("concat_14"), val = tensor<int32, [4]>([1, 0, 0, 0])];
|
129 |
+
tensor<int32, [1]> concat_15_values0_0 = const()[name = string("concat_15_values0_0"), val = tensor<int32, [1]>([0])];
|
130 |
+
tensor<int32, [1]> concat_15_values1_0 = const()[name = string("concat_15_values1_0"), val = tensor<int32, [1]>([0])];
|
131 |
+
tensor<int32, [1]> concat_15_values3_0 = const()[name = string("concat_15_values3_0"), val = tensor<int32, [1]>([0])];
|
132 |
+
int32 concat_15_axis_0 = const()[name = string("concat_15_axis_0"), val = int32(0)];
|
133 |
+
bool concat_15_interleave_0 = const()[name = string("concat_15_interleave_0"), val = bool(false)];
|
134 |
+
tensor<int32, [4]> concat_15 = concat(axis = concat_15_axis_0, interleave = concat_15_interleave_0, values = (concat_15_values0_0, concat_15_values1_0, expand_dims_23, concat_15_values3_0))[name = string("concat_15")];
|
135 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_2_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_2_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
136 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_2_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_2_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
137 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_2_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_2_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
138 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_2_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
139 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_14, begin_mask = v_cache2_internal_tensor_assign_2_begin_mask_0, end = concat_15, end_mask = v_cache2_internal_tensor_assign_2_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_2_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_2_stride_0, update = linear_3_cast_fp16, x = coreml_update_state_17)[name = string("v_cache2_internal_tensor_assign_2_cast_fp16")];
|
140 |
+
write_state(data = v_cache2_internal_tensor_assign_2_cast_fp16, input = v_cache2)[name = string("coreml_update_state_19_write_state")];
|
141 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_19 = read_state(input = v_cache2)[name = string("coreml_update_state_19")];
|
142 |
+
tensor<fp16, [512, 512]> var_147_to_fp16 = const()[name = string("op_147_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4853312)))];
|
143 |
+
tensor<fp16, [1, ?, 512]> linear_4_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_147_to_fp16, x = audio_data)[name = string("linear_4_cast_fp16")];
|
144 |
+
tensor<fp16, [512, 512]> var_151_to_fp16 = const()[name = string("op_151_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5377664)))];
|
145 |
+
tensor<fp16, [512]> var_152_to_fp16 = const()[name = string("op_152_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5902016)))];
|
146 |
+
tensor<fp16, [1, ?, 512]> linear_5_cast_fp16 = linear(bias = var_152_to_fp16, weight = var_151_to_fp16, x = audio_data)[name = string("linear_5_cast_fp16")];
|
147 |
+
tensor<int32, [3]> var_154_shape_cast_fp16 = shape(x = linear_4_cast_fp16)[name = string("op_154_shape_cast_fp16")];
|
148 |
+
int32 gather_4_axis_0 = const()[name = string("gather_4_axis_0"), val = int32(0)];
|
149 |
+
int32 gather_4_batch_dims_0 = const()[name = string("gather_4_batch_dims_0"), val = int32(0)];
|
150 |
+
bool gather_4_validate_indices_0 = const()[name = string("gather_4_validate_indices_0"), val = bool(false)];
|
151 |
+
string var_154_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_154_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
152 |
+
uint16 select_4_to_uint16 = const()[name = string("select_4_to_uint16"), val = uint16(1)];
|
153 |
+
tensor<uint16, [3]> var_154_shape_cast_fp16_to_uint16 = cast(dtype = var_154_shape_cast_fp16_to_uint16_dtype_0, x = var_154_shape_cast_fp16)[name = string("cast_35")];
|
154 |
+
uint16 gather_4_cast_uint16 = gather(axis = gather_4_axis_0, batch_dims = gather_4_batch_dims_0, indices = select_4_to_uint16, validate_indices = gather_4_validate_indices_0, x = var_154_shape_cast_fp16_to_uint16)[name = string("gather_4_cast_uint16")];
|
155 |
+
string gather_4_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_4_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
156 |
+
tensor<int32, [1]> expand_dims_27_axes_0 = const()[name = string("expand_dims_27_axes_0"), val = tensor<int32, [1]>([0])];
|
157 |
+
int32 gather_4_cast_uint16_to_int32 = cast(dtype = gather_4_cast_uint16_to_int32_dtype_0, x = gather_4_cast_uint16)[name = string("cast_34")];
|
158 |
+
tensor<int32, [1]> expand_dims_27 = expand_dims(axes = expand_dims_27_axes_0, x = gather_4_cast_uint16_to_int32)[name = string("expand_dims_27")];
|
159 |
+
tensor<int32, [4]> concat_17 = const()[name = string("concat_17"), val = tensor<int32, [4]>([2, 0, 0, 0])];
|
160 |
+
tensor<int32, [1]> concat_18_values0_0 = const()[name = string("concat_18_values0_0"), val = tensor<int32, [1]>([0])];
|
161 |
+
tensor<int32, [1]> concat_18_values1_0 = const()[name = string("concat_18_values1_0"), val = tensor<int32, [1]>([0])];
|
162 |
+
tensor<int32, [1]> concat_18_values3_0 = const()[name = string("concat_18_values3_0"), val = tensor<int32, [1]>([0])];
|
163 |
+
int32 concat_18_axis_0 = const()[name = string("concat_18_axis_0"), val = int32(0)];
|
164 |
+
bool concat_18_interleave_0 = const()[name = string("concat_18_interleave_0"), val = bool(false)];
|
165 |
+
tensor<int32, [4]> concat_18 = concat(axis = concat_18_axis_0, interleave = concat_18_interleave_0, values = (concat_18_values0_0, concat_18_values1_0, expand_dims_27, concat_18_values3_0))[name = string("concat_18")];
|
166 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_3_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_3_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
167 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_3_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_3_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
168 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_3_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_3_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
169 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_3_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
170 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_17, begin_mask = k_cache2_internal_tensor_assign_3_begin_mask_0, end = concat_18, end_mask = k_cache2_internal_tensor_assign_3_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_3_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_3_stride_0, update = linear_4_cast_fp16, x = coreml_update_state_18)[name = string("k_cache2_internal_tensor_assign_3_cast_fp16")];
|
171 |
+
write_state(data = k_cache2_internal_tensor_assign_3_cast_fp16, input = k_cache2)[name = string("coreml_update_state_20_write_state")];
|
172 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_20 = read_state(input = k_cache2)[name = string("coreml_update_state_20")];
|
173 |
+
tensor<int32, [3]> var_159_shape_cast_fp16 = shape(x = linear_5_cast_fp16)[name = string("op_159_shape_cast_fp16")];
|
174 |
+
int32 gather_5_axis_0 = const()[name = string("gather_5_axis_0"), val = int32(0)];
|
175 |
+
int32 gather_5_batch_dims_0 = const()[name = string("gather_5_batch_dims_0"), val = int32(0)];
|
176 |
+
bool gather_5_validate_indices_0 = const()[name = string("gather_5_validate_indices_0"), val = bool(false)];
|
177 |
+
string var_159_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_159_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
178 |
+
uint16 select_5_to_uint16 = const()[name = string("select_5_to_uint16"), val = uint16(1)];
|
179 |
+
tensor<uint16, [3]> var_159_shape_cast_fp16_to_uint16 = cast(dtype = var_159_shape_cast_fp16_to_uint16_dtype_0, x = var_159_shape_cast_fp16)[name = string("cast_33")];
|
180 |
+
uint16 gather_5_cast_uint16 = gather(axis = gather_5_axis_0, batch_dims = gather_5_batch_dims_0, indices = select_5_to_uint16, validate_indices = gather_5_validate_indices_0, x = var_159_shape_cast_fp16_to_uint16)[name = string("gather_5_cast_uint16")];
|
181 |
+
string gather_5_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_5_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
182 |
+
tensor<int32, [1]> expand_dims_31_axes_0 = const()[name = string("expand_dims_31_axes_0"), val = tensor<int32, [1]>([0])];
|
183 |
+
int32 gather_5_cast_uint16_to_int32 = cast(dtype = gather_5_cast_uint16_to_int32_dtype_0, x = gather_5_cast_uint16)[name = string("cast_32")];
|
184 |
+
tensor<int32, [1]> expand_dims_31 = expand_dims(axes = expand_dims_31_axes_0, x = gather_5_cast_uint16_to_int32)[name = string("expand_dims_31")];
|
185 |
+
tensor<int32, [4]> concat_20 = const()[name = string("concat_20"), val = tensor<int32, [4]>([2, 0, 0, 0])];
|
186 |
+
tensor<int32, [1]> concat_21_values0_0 = const()[name = string("concat_21_values0_0"), val = tensor<int32, [1]>([0])];
|
187 |
+
tensor<int32, [1]> concat_21_values1_0 = const()[name = string("concat_21_values1_0"), val = tensor<int32, [1]>([0])];
|
188 |
+
tensor<int32, [1]> concat_21_values3_0 = const()[name = string("concat_21_values3_0"), val = tensor<int32, [1]>([0])];
|
189 |
+
int32 concat_21_axis_0 = const()[name = string("concat_21_axis_0"), val = int32(0)];
|
190 |
+
bool concat_21_interleave_0 = const()[name = string("concat_21_interleave_0"), val = bool(false)];
|
191 |
+
tensor<int32, [4]> concat_21 = concat(axis = concat_21_axis_0, interleave = concat_21_interleave_0, values = (concat_21_values0_0, concat_21_values1_0, expand_dims_31, concat_21_values3_0))[name = string("concat_21")];
|
192 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_3_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_3_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
193 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_3_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_3_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
194 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_3_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_3_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
195 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_3_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
196 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_20, begin_mask = v_cache2_internal_tensor_assign_3_begin_mask_0, end = concat_21, end_mask = v_cache2_internal_tensor_assign_3_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_3_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_3_stride_0, update = linear_5_cast_fp16, x = coreml_update_state_19)[name = string("v_cache2_internal_tensor_assign_3_cast_fp16")];
|
197 |
+
write_state(data = v_cache2_internal_tensor_assign_3_cast_fp16, input = v_cache2)[name = string("coreml_update_state_21_write_state")];
|
198 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_21 = read_state(input = v_cache2)[name = string("coreml_update_state_21")];
|
199 |
+
tensor<fp16, [512, 512]> var_181_to_fp16 = const()[name = string("op_181_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5903104)))];
|
200 |
+
tensor<fp16, [1, ?, 512]> linear_6_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_181_to_fp16, x = audio_data)[name = string("linear_6_cast_fp16")];
|
201 |
+
tensor<fp16, [512, 512]> var_185_to_fp16 = const()[name = string("op_185_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(6427456)))];
|
202 |
+
tensor<fp16, [512]> var_186_to_fp16 = const()[name = string("op_186_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(6951808)))];
|
203 |
+
tensor<fp16, [1, ?, 512]> linear_7_cast_fp16 = linear(bias = var_186_to_fp16, weight = var_185_to_fp16, x = audio_data)[name = string("linear_7_cast_fp16")];
|
204 |
+
tensor<int32, [3]> var_188_shape_cast_fp16 = shape(x = linear_6_cast_fp16)[name = string("op_188_shape_cast_fp16")];
|
205 |
+
int32 gather_6_axis_0 = const()[name = string("gather_6_axis_0"), val = int32(0)];
|
206 |
+
int32 gather_6_batch_dims_0 = const()[name = string("gather_6_batch_dims_0"), val = int32(0)];
|
207 |
+
bool gather_6_validate_indices_0 = const()[name = string("gather_6_validate_indices_0"), val = bool(false)];
|
208 |
+
string var_188_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_188_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
209 |
+
uint16 select_6_to_uint16 = const()[name = string("select_6_to_uint16"), val = uint16(1)];
|
210 |
+
tensor<uint16, [3]> var_188_shape_cast_fp16_to_uint16 = cast(dtype = var_188_shape_cast_fp16_to_uint16_dtype_0, x = var_188_shape_cast_fp16)[name = string("cast_31")];
|
211 |
+
uint16 gather_6_cast_uint16 = gather(axis = gather_6_axis_0, batch_dims = gather_6_batch_dims_0, indices = select_6_to_uint16, validate_indices = gather_6_validate_indices_0, x = var_188_shape_cast_fp16_to_uint16)[name = string("gather_6_cast_uint16")];
|
212 |
+
string gather_6_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_6_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
213 |
+
tensor<int32, [1]> expand_dims_35_axes_0 = const()[name = string("expand_dims_35_axes_0"), val = tensor<int32, [1]>([0])];
|
214 |
+
int32 gather_6_cast_uint16_to_int32 = cast(dtype = gather_6_cast_uint16_to_int32_dtype_0, x = gather_6_cast_uint16)[name = string("cast_30")];
|
215 |
+
tensor<int32, [1]> expand_dims_35 = expand_dims(axes = expand_dims_35_axes_0, x = gather_6_cast_uint16_to_int32)[name = string("expand_dims_35")];
|
216 |
+
tensor<int32, [4]> concat_23 = const()[name = string("concat_23"), val = tensor<int32, [4]>([3, 0, 0, 0])];
|
217 |
+
tensor<int32, [1]> concat_24_values0_0 = const()[name = string("concat_24_values0_0"), val = tensor<int32, [1]>([0])];
|
218 |
+
tensor<int32, [1]> concat_24_values1_0 = const()[name = string("concat_24_values1_0"), val = tensor<int32, [1]>([0])];
|
219 |
+
tensor<int32, [1]> concat_24_values3_0 = const()[name = string("concat_24_values3_0"), val = tensor<int32, [1]>([0])];
|
220 |
+
int32 concat_24_axis_0 = const()[name = string("concat_24_axis_0"), val = int32(0)];
|
221 |
+
bool concat_24_interleave_0 = const()[name = string("concat_24_interleave_0"), val = bool(false)];
|
222 |
+
tensor<int32, [4]> concat_24 = concat(axis = concat_24_axis_0, interleave = concat_24_interleave_0, values = (concat_24_values0_0, concat_24_values1_0, expand_dims_35, concat_24_values3_0))[name = string("concat_24")];
|
223 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_4_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_4_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
224 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_4_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_4_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
225 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_4_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_4_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
226 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_4_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
227 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_23, begin_mask = k_cache2_internal_tensor_assign_4_begin_mask_0, end = concat_24, end_mask = k_cache2_internal_tensor_assign_4_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_4_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_4_stride_0, update = linear_6_cast_fp16, x = coreml_update_state_20)[name = string("k_cache2_internal_tensor_assign_4_cast_fp16")];
|
228 |
+
write_state(data = k_cache2_internal_tensor_assign_4_cast_fp16, input = k_cache2)[name = string("coreml_update_state_22_write_state")];
|
229 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_22 = read_state(input = k_cache2)[name = string("coreml_update_state_22")];
|
230 |
+
tensor<int32, [3]> var_193_shape_cast_fp16 = shape(x = linear_7_cast_fp16)[name = string("op_193_shape_cast_fp16")];
|
231 |
+
int32 gather_7_axis_0 = const()[name = string("gather_7_axis_0"), val = int32(0)];
|
232 |
+
int32 gather_7_batch_dims_0 = const()[name = string("gather_7_batch_dims_0"), val = int32(0)];
|
233 |
+
bool gather_7_validate_indices_0 = const()[name = string("gather_7_validate_indices_0"), val = bool(false)];
|
234 |
+
string var_193_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_193_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
235 |
+
uint16 select_7_to_uint16 = const()[name = string("select_7_to_uint16"), val = uint16(1)];
|
236 |
+
tensor<uint16, [3]> var_193_shape_cast_fp16_to_uint16 = cast(dtype = var_193_shape_cast_fp16_to_uint16_dtype_0, x = var_193_shape_cast_fp16)[name = string("cast_29")];
|
237 |
+
uint16 gather_7_cast_uint16 = gather(axis = gather_7_axis_0, batch_dims = gather_7_batch_dims_0, indices = select_7_to_uint16, validate_indices = gather_7_validate_indices_0, x = var_193_shape_cast_fp16_to_uint16)[name = string("gather_7_cast_uint16")];
|
238 |
+
string gather_7_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_7_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
239 |
+
tensor<int32, [1]> expand_dims_39_axes_0 = const()[name = string("expand_dims_39_axes_0"), val = tensor<int32, [1]>([0])];
|
240 |
+
int32 gather_7_cast_uint16_to_int32 = cast(dtype = gather_7_cast_uint16_to_int32_dtype_0, x = gather_7_cast_uint16)[name = string("cast_28")];
|
241 |
+
tensor<int32, [1]> expand_dims_39 = expand_dims(axes = expand_dims_39_axes_0, x = gather_7_cast_uint16_to_int32)[name = string("expand_dims_39")];
|
242 |
+
tensor<int32, [4]> concat_26 = const()[name = string("concat_26"), val = tensor<int32, [4]>([3, 0, 0, 0])];
|
243 |
+
tensor<int32, [1]> concat_27_values0_0 = const()[name = string("concat_27_values0_0"), val = tensor<int32, [1]>([0])];
|
244 |
+
tensor<int32, [1]> concat_27_values1_0 = const()[name = string("concat_27_values1_0"), val = tensor<int32, [1]>([0])];
|
245 |
+
tensor<int32, [1]> concat_27_values3_0 = const()[name = string("concat_27_values3_0"), val = tensor<int32, [1]>([0])];
|
246 |
+
int32 concat_27_axis_0 = const()[name = string("concat_27_axis_0"), val = int32(0)];
|
247 |
+
bool concat_27_interleave_0 = const()[name = string("concat_27_interleave_0"), val = bool(false)];
|
248 |
+
tensor<int32, [4]> concat_27 = concat(axis = concat_27_axis_0, interleave = concat_27_interleave_0, values = (concat_27_values0_0, concat_27_values1_0, expand_dims_39, concat_27_values3_0))[name = string("concat_27")];
|
249 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_4_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_4_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
250 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_4_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_4_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
251 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_4_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_4_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
252 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_4_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
253 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_26, begin_mask = v_cache2_internal_tensor_assign_4_begin_mask_0, end = concat_27, end_mask = v_cache2_internal_tensor_assign_4_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_4_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_4_stride_0, update = linear_7_cast_fp16, x = coreml_update_state_21)[name = string("v_cache2_internal_tensor_assign_4_cast_fp16")];
|
254 |
+
write_state(data = v_cache2_internal_tensor_assign_4_cast_fp16, input = v_cache2)[name = string("coreml_update_state_23_write_state")];
|
255 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_23 = read_state(input = v_cache2)[name = string("coreml_update_state_23")];
|
256 |
+
tensor<fp16, [512, 512]> var_215_to_fp16 = const()[name = string("op_215_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(6952896)))];
|
257 |
+
tensor<fp16, [1, ?, 512]> linear_8_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_215_to_fp16, x = audio_data)[name = string("linear_8_cast_fp16")];
|
258 |
+
tensor<fp16, [512, 512]> var_219_to_fp16 = const()[name = string("op_219_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(7477248)))];
|
259 |
+
tensor<fp16, [512]> var_220_to_fp16 = const()[name = string("op_220_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8001600)))];
|
260 |
+
tensor<fp16, [1, ?, 512]> linear_9_cast_fp16 = linear(bias = var_220_to_fp16, weight = var_219_to_fp16, x = audio_data)[name = string("linear_9_cast_fp16")];
|
261 |
+
tensor<int32, [3]> var_222_shape_cast_fp16 = shape(x = linear_8_cast_fp16)[name = string("op_222_shape_cast_fp16")];
|
262 |
+
int32 gather_8_axis_0 = const()[name = string("gather_8_axis_0"), val = int32(0)];
|
263 |
+
int32 gather_8_batch_dims_0 = const()[name = string("gather_8_batch_dims_0"), val = int32(0)];
|
264 |
+
bool gather_8_validate_indices_0 = const()[name = string("gather_8_validate_indices_0"), val = bool(false)];
|
265 |
+
string var_222_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_222_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
266 |
+
uint16 select_8_to_uint16 = const()[name = string("select_8_to_uint16"), val = uint16(1)];
|
267 |
+
tensor<uint16, [3]> var_222_shape_cast_fp16_to_uint16 = cast(dtype = var_222_shape_cast_fp16_to_uint16_dtype_0, x = var_222_shape_cast_fp16)[name = string("cast_27")];
|
268 |
+
uint16 gather_8_cast_uint16 = gather(axis = gather_8_axis_0, batch_dims = gather_8_batch_dims_0, indices = select_8_to_uint16, validate_indices = gather_8_validate_indices_0, x = var_222_shape_cast_fp16_to_uint16)[name = string("gather_8_cast_uint16")];
|
269 |
+
string gather_8_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_8_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
270 |
+
tensor<int32, [1]> expand_dims_43_axes_0 = const()[name = string("expand_dims_43_axes_0"), val = tensor<int32, [1]>([0])];
|
271 |
+
int32 gather_8_cast_uint16_to_int32 = cast(dtype = gather_8_cast_uint16_to_int32_dtype_0, x = gather_8_cast_uint16)[name = string("cast_26")];
|
272 |
+
tensor<int32, [1]> expand_dims_43 = expand_dims(axes = expand_dims_43_axes_0, x = gather_8_cast_uint16_to_int32)[name = string("expand_dims_43")];
|
273 |
+
tensor<int32, [4]> concat_29 = const()[name = string("concat_29"), val = tensor<int32, [4]>([4, 0, 0, 0])];
|
274 |
+
tensor<int32, [1]> concat_30_values0_0 = const()[name = string("concat_30_values0_0"), val = tensor<int32, [1]>([0])];
|
275 |
+
tensor<int32, [1]> concat_30_values1_0 = const()[name = string("concat_30_values1_0"), val = tensor<int32, [1]>([0])];
|
276 |
+
tensor<int32, [1]> concat_30_values3_0 = const()[name = string("concat_30_values3_0"), val = tensor<int32, [1]>([0])];
|
277 |
+
int32 concat_30_axis_0 = const()[name = string("concat_30_axis_0"), val = int32(0)];
|
278 |
+
bool concat_30_interleave_0 = const()[name = string("concat_30_interleave_0"), val = bool(false)];
|
279 |
+
tensor<int32, [4]> concat_30 = concat(axis = concat_30_axis_0, interleave = concat_30_interleave_0, values = (concat_30_values0_0, concat_30_values1_0, expand_dims_43, concat_30_values3_0))[name = string("concat_30")];
|
280 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_5_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_5_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
281 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_5_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_5_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
282 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_5_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_5_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
283 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_5_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
284 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_29, begin_mask = k_cache2_internal_tensor_assign_5_begin_mask_0, end = concat_30, end_mask = k_cache2_internal_tensor_assign_5_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_5_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_5_stride_0, update = linear_8_cast_fp16, x = coreml_update_state_22)[name = string("k_cache2_internal_tensor_assign_5_cast_fp16")];
|
285 |
+
write_state(data = k_cache2_internal_tensor_assign_5_cast_fp16, input = k_cache2)[name = string("coreml_update_state_24_write_state")];
|
286 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_24 = read_state(input = k_cache2)[name = string("coreml_update_state_24")];
|
287 |
+
tensor<int32, [3]> var_227_shape_cast_fp16 = shape(x = linear_9_cast_fp16)[name = string("op_227_shape_cast_fp16")];
|
288 |
+
int32 gather_9_axis_0 = const()[name = string("gather_9_axis_0"), val = int32(0)];
|
289 |
+
int32 gather_9_batch_dims_0 = const()[name = string("gather_9_batch_dims_0"), val = int32(0)];
|
290 |
+
bool gather_9_validate_indices_0 = const()[name = string("gather_9_validate_indices_0"), val = bool(false)];
|
291 |
+
string var_227_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_227_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
292 |
+
uint16 select_9_to_uint16 = const()[name = string("select_9_to_uint16"), val = uint16(1)];
|
293 |
+
tensor<uint16, [3]> var_227_shape_cast_fp16_to_uint16 = cast(dtype = var_227_shape_cast_fp16_to_uint16_dtype_0, x = var_227_shape_cast_fp16)[name = string("cast_25")];
|
294 |
+
uint16 gather_9_cast_uint16 = gather(axis = gather_9_axis_0, batch_dims = gather_9_batch_dims_0, indices = select_9_to_uint16, validate_indices = gather_9_validate_indices_0, x = var_227_shape_cast_fp16_to_uint16)[name = string("gather_9_cast_uint16")];
|
295 |
+
string gather_9_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_9_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
296 |
+
tensor<int32, [1]> expand_dims_47_axes_0 = const()[name = string("expand_dims_47_axes_0"), val = tensor<int32, [1]>([0])];
|
297 |
+
int32 gather_9_cast_uint16_to_int32 = cast(dtype = gather_9_cast_uint16_to_int32_dtype_0, x = gather_9_cast_uint16)[name = string("cast_24")];
|
298 |
+
tensor<int32, [1]> expand_dims_47 = expand_dims(axes = expand_dims_47_axes_0, x = gather_9_cast_uint16_to_int32)[name = string("expand_dims_47")];
|
299 |
+
tensor<int32, [4]> concat_32 = const()[name = string("concat_32"), val = tensor<int32, [4]>([4, 0, 0, 0])];
|
300 |
+
tensor<int32, [1]> concat_33_values0_0 = const()[name = string("concat_33_values0_0"), val = tensor<int32, [1]>([0])];
|
301 |
+
tensor<int32, [1]> concat_33_values1_0 = const()[name = string("concat_33_values1_0"), val = tensor<int32, [1]>([0])];
|
302 |
+
tensor<int32, [1]> concat_33_values3_0 = const()[name = string("concat_33_values3_0"), val = tensor<int32, [1]>([0])];
|
303 |
+
int32 concat_33_axis_0 = const()[name = string("concat_33_axis_0"), val = int32(0)];
|
304 |
+
bool concat_33_interleave_0 = const()[name = string("concat_33_interleave_0"), val = bool(false)];
|
305 |
+
tensor<int32, [4]> concat_33 = concat(axis = concat_33_axis_0, interleave = concat_33_interleave_0, values = (concat_33_values0_0, concat_33_values1_0, expand_dims_47, concat_33_values3_0))[name = string("concat_33")];
|
306 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_5_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_5_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
307 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_5_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_5_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
308 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_5_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_5_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
309 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_5_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
310 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_32, begin_mask = v_cache2_internal_tensor_assign_5_begin_mask_0, end = concat_33, end_mask = v_cache2_internal_tensor_assign_5_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_5_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_5_stride_0, update = linear_9_cast_fp16, x = coreml_update_state_23)[name = string("v_cache2_internal_tensor_assign_5_cast_fp16")];
|
311 |
+
write_state(data = v_cache2_internal_tensor_assign_5_cast_fp16, input = v_cache2)[name = string("coreml_update_state_25_write_state")];
|
312 |
+
tensor<fp16, [6, 1, 1500, 512]> coreml_update_state_25 = read_state(input = v_cache2)[name = string("coreml_update_state_25")];
|
313 |
+
tensor<fp16, [512, 512]> var_249_to_fp16 = const()[name = string("op_249_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8002688)))];
|
314 |
+
tensor<fp16, [1, ?, 512]> linear_10_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = var_249_to_fp16, x = audio_data)[name = string("linear_10_cast_fp16")];
|
315 |
+
tensor<fp16, [512, 512]> var_253_to_fp16 = const()[name = string("op_253_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(8527040)))];
|
316 |
+
tensor<fp16, [512]> var_254_to_fp16 = const()[name = string("op_254_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9051392)))];
|
317 |
+
tensor<fp16, [1, ?, 512]> linear_11_cast_fp16 = linear(bias = var_254_to_fp16, weight = var_253_to_fp16, x = audio_data)[name = string("linear_11_cast_fp16")];
|
318 |
+
tensor<int32, [3]> var_256_shape_cast_fp16 = shape(x = linear_10_cast_fp16)[name = string("op_256_shape_cast_fp16")];
|
319 |
+
int32 gather_10_axis_0 = const()[name = string("gather_10_axis_0"), val = int32(0)];
|
320 |
+
int32 gather_10_batch_dims_0 = const()[name = string("gather_10_batch_dims_0"), val = int32(0)];
|
321 |
+
bool gather_10_validate_indices_0 = const()[name = string("gather_10_validate_indices_0"), val = bool(false)];
|
322 |
+
string var_256_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_256_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
323 |
+
uint16 select_10_to_uint16 = const()[name = string("select_10_to_uint16"), val = uint16(1)];
|
324 |
+
tensor<uint16, [3]> var_256_shape_cast_fp16_to_uint16 = cast(dtype = var_256_shape_cast_fp16_to_uint16_dtype_0, x = var_256_shape_cast_fp16)[name = string("cast_23")];
|
325 |
+
uint16 gather_10_cast_uint16 = gather(axis = gather_10_axis_0, batch_dims = gather_10_batch_dims_0, indices = select_10_to_uint16, validate_indices = gather_10_validate_indices_0, x = var_256_shape_cast_fp16_to_uint16)[name = string("gather_10_cast_uint16")];
|
326 |
+
string gather_10_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_10_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
327 |
+
tensor<int32, [1]> expand_dims_51_axes_0 = const()[name = string("expand_dims_51_axes_0"), val = tensor<int32, [1]>([0])];
|
328 |
+
int32 gather_10_cast_uint16_to_int32 = cast(dtype = gather_10_cast_uint16_to_int32_dtype_0, x = gather_10_cast_uint16)[name = string("cast_22")];
|
329 |
+
tensor<int32, [1]> expand_dims_51 = expand_dims(axes = expand_dims_51_axes_0, x = gather_10_cast_uint16_to_int32)[name = string("expand_dims_51")];
|
330 |
+
tensor<int32, [4]> concat_35 = const()[name = string("concat_35"), val = tensor<int32, [4]>([5, 0, 0, 0])];
|
331 |
+
tensor<int32, [1]> concat_36_values0_0 = const()[name = string("concat_36_values0_0"), val = tensor<int32, [1]>([0])];
|
332 |
+
tensor<int32, [1]> concat_36_values1_0 = const()[name = string("concat_36_values1_0"), val = tensor<int32, [1]>([0])];
|
333 |
+
tensor<int32, [1]> concat_36_values3_0 = const()[name = string("concat_36_values3_0"), val = tensor<int32, [1]>([0])];
|
334 |
+
int32 concat_36_axis_0 = const()[name = string("concat_36_axis_0"), val = int32(0)];
|
335 |
+
bool concat_36_interleave_0 = const()[name = string("concat_36_interleave_0"), val = bool(false)];
|
336 |
+
tensor<int32, [4]> concat_36 = concat(axis = concat_36_axis_0, interleave = concat_36_interleave_0, values = (concat_36_values0_0, concat_36_values1_0, expand_dims_51, concat_36_values3_0))[name = string("concat_36")];
|
337 |
+
tensor<int32, [4]> k_cache2_internal_tensor_assign_6_stride_0 = const()[name = string("k_cache2_internal_tensor_assign_6_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
338 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_6_begin_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_6_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
339 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_6_end_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_6_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
340 |
+
tensor<bool, [4]> k_cache2_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("k_cache2_internal_tensor_assign_6_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
341 |
+
tensor<fp16, [6, 1, 1500, 512]> k_cache2_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_35, begin_mask = k_cache2_internal_tensor_assign_6_begin_mask_0, end = concat_36, end_mask = k_cache2_internal_tensor_assign_6_end_mask_0, squeeze_mask = k_cache2_internal_tensor_assign_6_squeeze_mask_0, stride = k_cache2_internal_tensor_assign_6_stride_0, update = linear_10_cast_fp16, x = coreml_update_state_24)[name = string("k_cache2_internal_tensor_assign_6_cast_fp16")];
|
342 |
+
write_state(data = k_cache2_internal_tensor_assign_6_cast_fp16, input = k_cache2)[name = string("coreml_update_state_26_write_state")];
|
343 |
+
tensor<int32, [3]> var_261_shape_cast_fp16 = shape(x = linear_11_cast_fp16)[name = string("op_261_shape_cast_fp16")];
|
344 |
+
int32 gather_11_axis_0 = const()[name = string("gather_11_axis_0"), val = int32(0)];
|
345 |
+
int32 gather_11_batch_dims_0 = const()[name = string("gather_11_batch_dims_0"), val = int32(0)];
|
346 |
+
bool gather_11_validate_indices_0 = const()[name = string("gather_11_validate_indices_0"), val = bool(false)];
|
347 |
+
string var_261_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_261_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")];
|
348 |
+
uint16 select_11_to_uint16 = const()[name = string("select_11_to_uint16"), val = uint16(1)];
|
349 |
+
tensor<uint16, [3]> var_261_shape_cast_fp16_to_uint16 = cast(dtype = var_261_shape_cast_fp16_to_uint16_dtype_0, x = var_261_shape_cast_fp16)[name = string("cast_21")];
|
350 |
+
uint16 gather_11_cast_uint16 = gather(axis = gather_11_axis_0, batch_dims = gather_11_batch_dims_0, indices = select_11_to_uint16, validate_indices = gather_11_validate_indices_0, x = var_261_shape_cast_fp16_to_uint16)[name = string("gather_11_cast_uint16")];
|
351 |
+
string gather_11_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_11_cast_uint16_to_int32_dtype_0"), val = string("int32")];
|
352 |
+
tensor<int32, [1]> expand_dims_55_axes_0 = const()[name = string("expand_dims_55_axes_0"), val = tensor<int32, [1]>([0])];
|
353 |
+
int32 gather_11_cast_uint16_to_int32 = cast(dtype = gather_11_cast_uint16_to_int32_dtype_0, x = gather_11_cast_uint16)[name = string("cast_20")];
|
354 |
+
tensor<int32, [1]> expand_dims_55 = expand_dims(axes = expand_dims_55_axes_0, x = gather_11_cast_uint16_to_int32)[name = string("expand_dims_55")];
|
355 |
+
tensor<int32, [4]> concat_38 = const()[name = string("concat_38"), val = tensor<int32, [4]>([5, 0, 0, 0])];
|
356 |
+
tensor<int32, [1]> concat_39_values0_0 = const()[name = string("concat_39_values0_0"), val = tensor<int32, [1]>([0])];
|
357 |
+
tensor<int32, [1]> concat_39_values1_0 = const()[name = string("concat_39_values1_0"), val = tensor<int32, [1]>([0])];
|
358 |
+
tensor<int32, [1]> concat_39_values3_0 = const()[name = string("concat_39_values3_0"), val = tensor<int32, [1]>([0])];
|
359 |
+
int32 concat_39_axis_0 = const()[name = string("concat_39_axis_0"), val = int32(0)];
|
360 |
+
bool concat_39_interleave_0 = const()[name = string("concat_39_interleave_0"), val = bool(false)];
|
361 |
+
tensor<int32, [4]> concat_39 = concat(axis = concat_39_axis_0, interleave = concat_39_interleave_0, values = (concat_39_values0_0, concat_39_values1_0, expand_dims_55, concat_39_values3_0))[name = string("concat_39")];
|
362 |
+
tensor<int32, [4]> v_cache2_internal_tensor_assign_6_stride_0 = const()[name = string("v_cache2_internal_tensor_assign_6_stride_0"), val = tensor<int32, [4]>([1, 1, 1, 1])];
|
363 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_6_begin_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_6_begin_mask_0"), val = tensor<bool, [4]>([false, false, false, false])];
|
364 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_6_end_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_6_end_mask_0"), val = tensor<bool, [4]>([false, true, false, true])];
|
365 |
+
tensor<bool, [4]> v_cache2_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("v_cache2_internal_tensor_assign_6_squeeze_mask_0"), val = tensor<bool, [4]>([true, false, false, false])];
|
366 |
+
tensor<fp16, [6, 1, 1500, 512]> v_cache2_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_38, begin_mask = v_cache2_internal_tensor_assign_6_begin_mask_0, end = concat_39, end_mask = v_cache2_internal_tensor_assign_6_end_mask_0, squeeze_mask = v_cache2_internal_tensor_assign_6_squeeze_mask_0, stride = v_cache2_internal_tensor_assign_6_stride_0, update = linear_11_cast_fp16, x = coreml_update_state_25)[name = string("v_cache2_internal_tensor_assign_6_cast_fp16")];
|
367 |
+
write_state(data = v_cache2_internal_tensor_assign_6_cast_fp16, input = v_cache2)[name = string("coreml_update_state_27_write_state")];
|
368 |
+
} -> (dummy);
|
369 |
+
}
|
base/decoder_first.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fdbcff86cdfe9e0b8842ad4bc1af8ebbf22082b1d0342a8304023f63dd3663f
|
3 |
+
size 9052480
|
base/decoder_second.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68a3b3426587d83e56d3286cc0b733c9b8a5bff6b1ad6f9e1789a3cb55164455
|
3 |
+
size 243
|
base/decoder_second.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6c0272d581c200e0ab4f29c687e4a7b49152e241cea335fa6faa6a430a460b6
|
3 |
+
size 487
|
base/decoder_second.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "logits",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.linear" : 49,
|
23 |
+
"Ios18.readState" : 14,
|
24 |
+
"Ios18.expandDims" : 7,
|
25 |
+
"Ios18.sub" : 1,
|
26 |
+
"Ios18.matmul" : 24,
|
27 |
+
"Ios18.gelu" : 6,
|
28 |
+
"Ios18.gather" : 9,
|
29 |
+
"Ios18.concat" : 32,
|
30 |
+
"Shape" : 8,
|
31 |
+
"Ios18.add" : 31,
|
32 |
+
"Ios18.sliceUpdate" : 24,
|
33 |
+
"Ios18.sliceByIndex" : 49,
|
34 |
+
"Ios18.layerNorm" : 19,
|
35 |
+
"Ios18.cast" : 16,
|
36 |
+
"Ios18.transpose" : 48,
|
37 |
+
"Ios18.writeState" : 12,
|
38 |
+
"Ios18.reshape" : 48,
|
39 |
+
"Ios18.softmax" : 12,
|
40 |
+
"Ios18.mul" : 24
|
41 |
+
},
|
42 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32, UInt16)",
|
43 |
+
"isUpdatable" : "0",
|
44 |
+
"stateSchema" : [
|
45 |
+
{
|
46 |
+
"dataType" : "Float16",
|
47 |
+
"isOptional" : "0",
|
48 |
+
"formattedType" : "State (Float16 6 × 1 × 448 × 512)",
|
49 |
+
"shortDescription" : "",
|
50 |
+
"shape" : "[6, 1, 448, 512]",
|
51 |
+
"name" : "k_cache1",
|
52 |
+
"type" : "State"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"dataType" : "Float16",
|
56 |
+
"isOptional" : "0",
|
57 |
+
"formattedType" : "State (Float16 6 × 1 × 448 × 512)",
|
58 |
+
"shortDescription" : "",
|
59 |
+
"shape" : "[6, 1, 448, 512]",
|
60 |
+
"name" : "v_cache1",
|
61 |
+
"type" : "State"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"formattedType" : "State (Float16 6 × 1 × 1500 × 512)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[6, 1, 1500, 512]",
|
69 |
+
"name" : "k_cache2",
|
70 |
+
"type" : "State"
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"dataType" : "Float16",
|
74 |
+
"isOptional" : "0",
|
75 |
+
"formattedType" : "State (Float16 6 × 1 × 1500 × 512)",
|
76 |
+
"shortDescription" : "",
|
77 |
+
"shape" : "[6, 1, 1500, 512]",
|
78 |
+
"name" : "v_cache2",
|
79 |
+
"type" : "State"
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"availability" : {
|
83 |
+
"macOS" : "15.0",
|
84 |
+
"tvOS" : "18.0",
|
85 |
+
"visionOS" : "2.0",
|
86 |
+
"watchOS" : "11.0",
|
87 |
+
"iOS" : "18.0",
|
88 |
+
"macCatalyst" : "18.0"
|
89 |
+
},
|
90 |
+
"modelType" : {
|
91 |
+
"name" : "MLModelType_mlProgram"
|
92 |
+
},
|
93 |
+
"userDefinedMetadata" : {
|
94 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
95 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
96 |
+
"com.github.apple.coremltools.version" : "8.0"
|
97 |
+
},
|
98 |
+
"inputSchema" : [
|
99 |
+
{
|
100 |
+
"dataType" : "Int32",
|
101 |
+
"hasShapeFlexibility" : "1",
|
102 |
+
"isOptional" : "0",
|
103 |
+
"shapeFlexibility" : "1 × 1...448",
|
104 |
+
"shapeRange" : "[[1, 1], [1, 448]]",
|
105 |
+
"formattedType" : "MultiArray (Int32 1 × 1)",
|
106 |
+
"type" : "MultiArray",
|
107 |
+
"shape" : "[1, 1]",
|
108 |
+
"name" : "token_data",
|
109 |
+
"shortDescription" : ""
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"dataType" : "Float16",
|
113 |
+
"hasShapeFlexibility" : "1",
|
114 |
+
"isOptional" : "0",
|
115 |
+
"shapeFlexibility" : "1 × 1...448",
|
116 |
+
"shapeRange" : "[[1, 1], [1, 448]]",
|
117 |
+
"formattedType" : "MultiArray (Float16 1 × 1)",
|
118 |
+
"type" : "MultiArray",
|
119 |
+
"shape" : "[1, 1]",
|
120 |
+
"name" : "offset_mask",
|
121 |
+
"shortDescription" : ""
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"generatedClassName" : "decoder_second",
|
125 |
+
"method" : "predict"
|
126 |
+
}
|
127 |
+
]
|
base/decoder_second.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
base/decoder_second.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94338bcd9475d6d8848699ee40dd6fac40d1e597c1e28d124454a7bf37bff672
|
3 |
+
size 99759858
|
base/encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:405dc318443c493222a32916d66c5d908d7cc1d250f73e9a192d5b734a8494ed
|
3 |
+
size 243
|
base/encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b04d5884b5a2d983f52a0e557aff2e7d3dff78b2a9f9d496a5280546bacfaff
|
3 |
+
size 318
|
base/encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1500 × 512)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1500, 512]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.mul" : 12,
|
23 |
+
"Ios18.softmax" : 6,
|
24 |
+
"Ios18.linear" : 36,
|
25 |
+
"Ios18.gelu" : 8,
|
26 |
+
"Ios18.layerNorm" : 13,
|
27 |
+
"Ios18.transpose" : 25,
|
28 |
+
"Ios18.matmul" : 12,
|
29 |
+
"Ios18.conv" : 2,
|
30 |
+
"Ios18.add" : 13,
|
31 |
+
"Ios18.reshape" : 24
|
32 |
+
},
|
33 |
+
"computePrecision" : "Mixed (Float16, Int32)",
|
34 |
+
"isUpdatable" : "0",
|
35 |
+
"stateSchema" : [
|
36 |
+
|
37 |
+
],
|
38 |
+
"availability" : {
|
39 |
+
"macOS" : "15.0",
|
40 |
+
"tvOS" : "18.0",
|
41 |
+
"visionOS" : "2.0",
|
42 |
+
"watchOS" : "11.0",
|
43 |
+
"iOS" : "18.0",
|
44 |
+
"macCatalyst" : "18.0"
|
45 |
+
},
|
46 |
+
"modelType" : {
|
47 |
+
"name" : "MLModelType_mlProgram"
|
48 |
+
},
|
49 |
+
"userDefinedMetadata" : {
|
50 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
51 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
52 |
+
"com.github.apple.coremltools.version" : "8.0"
|
53 |
+
},
|
54 |
+
"inputSchema" : [
|
55 |
+
{
|
56 |
+
"hasShapeFlexibility" : "0",
|
57 |
+
"isOptional" : "0",
|
58 |
+
"dataType" : "Float16",
|
59 |
+
"formattedType" : "MultiArray (Float16 1 × 80 × 3000)",
|
60 |
+
"shortDescription" : "",
|
61 |
+
"shape" : "[1, 80, 3000]",
|
62 |
+
"name" : "logmel_data",
|
63 |
+
"type" : "MultiArray"
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"generatedClassName" : "encoder",
|
67 |
+
"method" : "predict"
|
68 |
+
}
|
69 |
+
]
|
base/encoder.mlmodelc/model.mil
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.3)
|
2 |
+
[buildInfo = dict<string, string>({{"coremlc-component-MIL", "3400.43.1"}, {"coremlc-version", "3400.58.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
|
3 |
+
{
|
4 |
+
func main<ios18>(tensor<fp16, [1, 80, 3000]> logmel_data) {
|
5 |
+
string var_32_pad_type_0 = const()[name = string("op_32_pad_type_0"), val = string("custom")];
|
6 |
+
tensor<int32, [2]> var_32_pad_0 = const()[name = string("op_32_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
7 |
+
tensor<int32, [1]> var_32_strides_0 = const()[name = string("op_32_strides_0"), val = tensor<int32, [1]>([1])];
|
8 |
+
tensor<int32, [1]> var_32_dilations_0 = const()[name = string("op_32_dilations_0"), val = tensor<int32, [1]>([1])];
|
9 |
+
int32 var_32_groups_0 = const()[name = string("op_32_groups_0"), val = int32(1)];
|
10 |
+
tensor<fp16, [512, 80, 3]> weight_3_to_fp16 = const()[name = string("weight_3_to_fp16"), val = tensor<fp16, [512, 80, 3]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64)))];
|
11 |
+
tensor<fp16, [512]> bias_3_to_fp16 = const()[name = string("bias_3_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(245888)))];
|
12 |
+
tensor<fp16, [1, 512, 3000]> var_32_cast_fp16 = conv(bias = bias_3_to_fp16, dilations = var_32_dilations_0, groups = var_32_groups_0, pad = var_32_pad_0, pad_type = var_32_pad_type_0, strides = var_32_strides_0, weight = weight_3_to_fp16, x = logmel_data)[name = string("op_32_cast_fp16")];
|
13 |
+
string input_1_mode_0 = const()[name = string("input_1_mode_0"), val = string("EXACT")];
|
14 |
+
tensor<fp16, [1, 512, 3000]> input_1_cast_fp16 = gelu(mode = input_1_mode_0, x = var_32_cast_fp16)[name = string("input_1_cast_fp16")];
|
15 |
+
string var_50_pad_type_0 = const()[name = string("op_50_pad_type_0"), val = string("custom")];
|
16 |
+
tensor<int32, [2]> var_50_pad_0 = const()[name = string("op_50_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
17 |
+
tensor<int32, [1]> var_50_strides_0 = const()[name = string("op_50_strides_0"), val = tensor<int32, [1]>([2])];
|
18 |
+
tensor<int32, [1]> var_50_dilations_0 = const()[name = string("op_50_dilations_0"), val = tensor<int32, [1]>([1])];
|
19 |
+
int32 var_50_groups_0 = const()[name = string("op_50_groups_0"), val = int32(1)];
|
20 |
+
tensor<fp16, [512, 512, 3]> weight_7_to_fp16 = const()[name = string("weight_7_to_fp16"), val = tensor<fp16, [512, 512, 3]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(246976)))];
|
21 |
+
tensor<fp16, [512]> bias_7_to_fp16 = const()[name = string("bias_7_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1819904)))];
|
22 |
+
tensor<fp16, [1, 512, 1500]> var_50_cast_fp16 = conv(bias = bias_7_to_fp16, dilations = var_50_dilations_0, groups = var_50_groups_0, pad = var_50_pad_0, pad_type = var_50_pad_type_0, strides = var_50_strides_0, weight = weight_7_to_fp16, x = input_1_cast_fp16)[name = string("op_50_cast_fp16")];
|
23 |
+
string x_3_mode_0 = const()[name = string("x_3_mode_0"), val = string("EXACT")];
|
24 |
+
tensor<fp16, [1, 512, 1500]> x_3_cast_fp16 = gelu(mode = x_3_mode_0, x = var_50_cast_fp16)[name = string("x_3_cast_fp16")];
|
25 |
+
tensor<int32, [3]> var_56 = const()[name = string("op_56"), val = tensor<int32, [3]>([0, 2, 1])];
|
26 |
+
tensor<fp16, [1500, 512]> positional_embedding_to_fp16 = const()[name = string("positional_embedding_to_fp16"), val = tensor<fp16, [1500, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1820992)))];
|
27 |
+
tensor<fp16, [1, 1500, 512]> x_5_cast_fp16 = transpose(perm = var_56, x = x_3_cast_fp16)[name = string("transpose_60")];
|
28 |
+
tensor<fp16, [1, 1500, 512]> var_59_cast_fp16 = add(x = x_5_cast_fp16, y = positional_embedding_to_fp16)[name = string("op_59_cast_fp16")];
|
29 |
+
int32 var_72 = const()[name = string("op_72"), val = int32(-1)];
|
30 |
+
tensor<int32, [1]> var_88_axes_0 = const()[name = string("op_88_axes_0"), val = tensor<int32, [1]>([-1])];
|
31 |
+
tensor<fp16, [512]> blocks_0_attn_ln_weight_to_fp16 = const()[name = string("blocks_0_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3357056)))];
|
32 |
+
tensor<fp16, [512]> blocks_0_attn_ln_bias_to_fp16 = const()[name = string("blocks_0_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3358144)))];
|
33 |
+
fp16 var_78_to_fp16 = const()[name = string("op_78_to_fp16"), val = fp16(0x1.5p-17)];
|
34 |
+
tensor<fp16, [1, 1500, 512]> var_88_cast_fp16 = layer_norm(axes = var_88_axes_0, beta = blocks_0_attn_ln_bias_to_fp16, epsilon = var_78_to_fp16, gamma = blocks_0_attn_ln_weight_to_fp16, x = var_59_cast_fp16)[name = string("op_88_cast_fp16")];
|
35 |
+
tensor<fp16, [512, 512]> var_99_to_fp16 = const()[name = string("op_99_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3359232)))];
|
36 |
+
tensor<fp16, [512]> var_100_to_fp16 = const()[name = string("op_100_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3883584)))];
|
37 |
+
tensor<fp16, [1, 1500, 512]> linear_0_cast_fp16 = linear(bias = var_100_to_fp16, weight = var_99_to_fp16, x = var_88_cast_fp16)[name = string("linear_0_cast_fp16")];
|
38 |
+
tensor<fp16, [512, 512]> var_103_to_fp16 = const()[name = string("op_103_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(3884672)))];
|
39 |
+
tensor<fp16, [512]> linear_1_bias_0_to_fp16 = const()[name = string("linear_1_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4409024)))];
|
40 |
+
tensor<fp16, [1, 1500, 512]> linear_1_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_103_to_fp16, x = var_88_cast_fp16)[name = string("linear_1_cast_fp16")];
|
41 |
+
tensor<fp16, [512, 512]> var_107_to_fp16 = const()[name = string("op_107_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4410112)))];
|
42 |
+
tensor<fp16, [512]> var_108_to_fp16 = const()[name = string("op_108_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4934464)))];
|
43 |
+
tensor<fp16, [1, 1500, 512]> linear_2_cast_fp16 = linear(bias = var_108_to_fp16, weight = var_107_to_fp16, x = var_88_cast_fp16)[name = string("linear_2_cast_fp16")];
|
44 |
+
tensor<int32, [4]> var_116 = const()[name = string("op_116"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
45 |
+
tensor<fp16, [1, 1500, 8, 64]> var_117_cast_fp16 = reshape(shape = var_116, x = linear_0_cast_fp16)[name = string("op_117_cast_fp16")];
|
46 |
+
tensor<fp16, [1, 1, 1, 1]> const_42_to_fp16 = const()[name = string("const_42_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
47 |
+
tensor<fp16, [1, 1500, 8, 64]> q_3_cast_fp16 = mul(x = var_117_cast_fp16, y = const_42_to_fp16)[name = string("q_3_cast_fp16")];
|
48 |
+
tensor<int32, [4]> var_123 = const()[name = string("op_123"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
49 |
+
tensor<fp16, [1, 1500, 8, 64]> var_124_cast_fp16 = reshape(shape = var_123, x = linear_1_cast_fp16)[name = string("op_124_cast_fp16")];
|
50 |
+
tensor<fp16, [1, 1, 1, 1]> const_43_to_fp16 = const()[name = string("const_43_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
51 |
+
tensor<fp16, [1, 1500, 8, 64]> k_3_cast_fp16 = mul(x = var_124_cast_fp16, y = const_43_to_fp16)[name = string("k_3_cast_fp16")];
|
52 |
+
tensor<int32, [4]> var_130 = const()[name = string("op_130"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
53 |
+
tensor<fp16, [1, 1500, 8, 64]> var_131_cast_fp16 = reshape(shape = var_130, x = linear_2_cast_fp16)[name = string("op_131_cast_fp16")];
|
54 |
+
tensor<int32, [4]> var_132 = const()[name = string("op_132"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
55 |
+
bool qk_1_transpose_x_0 = const()[name = string("qk_1_transpose_x_0"), val = bool(false)];
|
56 |
+
bool qk_1_transpose_y_0 = const()[name = string("qk_1_transpose_y_0"), val = bool(false)];
|
57 |
+
tensor<int32, [4]> transpose_24_perm_0 = const()[name = string("transpose_24_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
58 |
+
tensor<int32, [4]> transpose_25_perm_0 = const()[name = string("transpose_25_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
59 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_25 = transpose(perm = transpose_25_perm_0, x = k_3_cast_fp16)[name = string("transpose_57")];
|
60 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_24 = transpose(perm = transpose_24_perm_0, x = q_3_cast_fp16)[name = string("transpose_58")];
|
61 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_1_cast_fp16 = matmul(transpose_x = qk_1_transpose_x_0, transpose_y = qk_1_transpose_y_0, x = transpose_24, y = transpose_25)[name = string("qk_1_cast_fp16")];
|
62 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_136_cast_fp16 = softmax(axis = var_72, x = qk_1_cast_fp16)[name = string("op_136_cast_fp16")];
|
63 |
+
bool var_138_transpose_x_0 = const()[name = string("op_138_transpose_x_0"), val = bool(false)];
|
64 |
+
bool var_138_transpose_y_0 = const()[name = string("op_138_transpose_y_0"), val = bool(false)];
|
65 |
+
tensor<fp16, [1, 8, 1500, 64]> v_3_cast_fp16 = transpose(perm = var_132, x = var_131_cast_fp16)[name = string("transpose_59")];
|
66 |
+
tensor<fp16, [1, 8, 1500, 64]> var_138_cast_fp16 = matmul(transpose_x = var_138_transpose_x_0, transpose_y = var_138_transpose_y_0, x = var_136_cast_fp16, y = v_3_cast_fp16)[name = string("op_138_cast_fp16")];
|
67 |
+
tensor<int32, [4]> var_139 = const()[name = string("op_139"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
68 |
+
tensor<int32, [3]> concat_0 = const()[name = string("concat_0"), val = tensor<int32, [3]>([1, 1500, 512])];
|
69 |
+
tensor<fp16, [1, 1500, 8, 64]> var_140_cast_fp16 = transpose(perm = var_139, x = var_138_cast_fp16)[name = string("transpose_56")];
|
70 |
+
tensor<fp16, [1, 1500, 512]> x_11_cast_fp16 = reshape(shape = concat_0, x = var_140_cast_fp16)[name = string("x_11_cast_fp16")];
|
71 |
+
tensor<fp16, [512, 512]> var_144_to_fp16 = const()[name = string("op_144_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(4935552)))];
|
72 |
+
tensor<fp16, [512]> var_145_to_fp16 = const()[name = string("op_145_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5459904)))];
|
73 |
+
tensor<fp16, [1, 1500, 512]> linear_3_cast_fp16 = linear(bias = var_145_to_fp16, weight = var_144_to_fp16, x = x_11_cast_fp16)[name = string("linear_3_cast_fp16")];
|
74 |
+
tensor<fp16, [1, 1500, 512]> x_13_cast_fp16 = add(x = var_59_cast_fp16, y = linear_3_cast_fp16)[name = string("x_13_cast_fp16")];
|
75 |
+
tensor<int32, [1]> var_152_axes_0 = const()[name = string("op_152_axes_0"), val = tensor<int32, [1]>([-1])];
|
76 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_weight_to_fp16 = const()[name = string("blocks_0_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5460992)))];
|
77 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_bias_to_fp16 = const()[name = string("blocks_0_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5462080)))];
|
78 |
+
tensor<fp16, [1, 1500, 512]> var_152_cast_fp16 = layer_norm(axes = var_152_axes_0, beta = blocks_0_mlp_ln_bias_to_fp16, epsilon = var_78_to_fp16, gamma = blocks_0_mlp_ln_weight_to_fp16, x = x_13_cast_fp16)[name = string("op_152_cast_fp16")];
|
79 |
+
tensor<fp16, [2048, 512]> var_161_to_fp16 = const()[name = string("op_161_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(5463168)))];
|
80 |
+
tensor<fp16, [2048]> var_162_to_fp16 = const()[name = string("op_162_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(7560384)))];
|
81 |
+
tensor<fp16, [1, 1500, 2048]> linear_4_cast_fp16 = linear(bias = var_162_to_fp16, weight = var_161_to_fp16, x = var_152_cast_fp16)[name = string("linear_4_cast_fp16")];
|
82 |
+
string x_17_mode_0 = const()[name = string("x_17_mode_0"), val = string("EXACT")];
|
83 |
+
tensor<fp16, [1, 1500, 2048]> x_17_cast_fp16 = gelu(mode = x_17_mode_0, x = linear_4_cast_fp16)[name = string("x_17_cast_fp16")];
|
84 |
+
tensor<fp16, [512, 2048]> var_167_to_fp16 = const()[name = string("op_167_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(7564544)))];
|
85 |
+
tensor<fp16, [512]> var_168_to_fp16 = const()[name = string("op_168_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9661760)))];
|
86 |
+
tensor<fp16, [1, 1500, 512]> linear_5_cast_fp16 = linear(bias = var_168_to_fp16, weight = var_167_to_fp16, x = x_17_cast_fp16)[name = string("linear_5_cast_fp16")];
|
87 |
+
tensor<fp16, [1, 1500, 512]> x_19_cast_fp16 = add(x = x_13_cast_fp16, y = linear_5_cast_fp16)[name = string("x_19_cast_fp16")];
|
88 |
+
int32 var_178 = const()[name = string("op_178"), val = int32(-1)];
|
89 |
+
tensor<int32, [1]> var_194_axes_0 = const()[name = string("op_194_axes_0"), val = tensor<int32, [1]>([-1])];
|
90 |
+
tensor<fp16, [512]> blocks_1_attn_ln_weight_to_fp16 = const()[name = string("blocks_1_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9662848)))];
|
91 |
+
tensor<fp16, [512]> blocks_1_attn_ln_bias_to_fp16 = const()[name = string("blocks_1_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9663936)))];
|
92 |
+
fp16 var_184_to_fp16 = const()[name = string("op_184_to_fp16"), val = fp16(0x1.5p-17)];
|
93 |
+
tensor<fp16, [1, 1500, 512]> var_194_cast_fp16 = layer_norm(axes = var_194_axes_0, beta = blocks_1_attn_ln_bias_to_fp16, epsilon = var_184_to_fp16, gamma = blocks_1_attn_ln_weight_to_fp16, x = x_19_cast_fp16)[name = string("op_194_cast_fp16")];
|
94 |
+
tensor<fp16, [512, 512]> var_205_to_fp16 = const()[name = string("op_205_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(9665024)))];
|
95 |
+
tensor<fp16, [512]> var_206_to_fp16 = const()[name = string("op_206_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(10189376)))];
|
96 |
+
tensor<fp16, [1, 1500, 512]> linear_6_cast_fp16 = linear(bias = var_206_to_fp16, weight = var_205_to_fp16, x = var_194_cast_fp16)[name = string("linear_6_cast_fp16")];
|
97 |
+
tensor<fp16, [512, 512]> var_209_to_fp16 = const()[name = string("op_209_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(10190464)))];
|
98 |
+
tensor<fp16, [1, 1500, 512]> linear_7_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_209_to_fp16, x = var_194_cast_fp16)[name = string("linear_7_cast_fp16")];
|
99 |
+
tensor<fp16, [512, 512]> var_213_to_fp16 = const()[name = string("op_213_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(10714816)))];
|
100 |
+
tensor<fp16, [512]> var_214_to_fp16 = const()[name = string("op_214_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11239168)))];
|
101 |
+
tensor<fp16, [1, 1500, 512]> linear_8_cast_fp16 = linear(bias = var_214_to_fp16, weight = var_213_to_fp16, x = var_194_cast_fp16)[name = string("linear_8_cast_fp16")];
|
102 |
+
tensor<int32, [4]> var_222 = const()[name = string("op_222"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
103 |
+
tensor<fp16, [1, 1500, 8, 64]> var_223_cast_fp16 = reshape(shape = var_222, x = linear_6_cast_fp16)[name = string("op_223_cast_fp16")];
|
104 |
+
tensor<fp16, [1, 1, 1, 1]> const_44_to_fp16 = const()[name = string("const_44_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
105 |
+
tensor<fp16, [1, 1500, 8, 64]> q_7_cast_fp16 = mul(x = var_223_cast_fp16, y = const_44_to_fp16)[name = string("q_7_cast_fp16")];
|
106 |
+
tensor<int32, [4]> var_229 = const()[name = string("op_229"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
107 |
+
tensor<fp16, [1, 1500, 8, 64]> var_230_cast_fp16 = reshape(shape = var_229, x = linear_7_cast_fp16)[name = string("op_230_cast_fp16")];
|
108 |
+
tensor<fp16, [1, 1, 1, 1]> const_45_to_fp16 = const()[name = string("const_45_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
109 |
+
tensor<fp16, [1, 1500, 8, 64]> k_7_cast_fp16 = mul(x = var_230_cast_fp16, y = const_45_to_fp16)[name = string("k_7_cast_fp16")];
|
110 |
+
tensor<int32, [4]> var_236 = const()[name = string("op_236"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
111 |
+
tensor<fp16, [1, 1500, 8, 64]> var_237_cast_fp16 = reshape(shape = var_236, x = linear_8_cast_fp16)[name = string("op_237_cast_fp16")];
|
112 |
+
tensor<int32, [4]> var_238 = const()[name = string("op_238"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
113 |
+
bool qk_3_transpose_x_0 = const()[name = string("qk_3_transpose_x_0"), val = bool(false)];
|
114 |
+
bool qk_3_transpose_y_0 = const()[name = string("qk_3_transpose_y_0"), val = bool(false)];
|
115 |
+
tensor<int32, [4]> transpose_26_perm_0 = const()[name = string("transpose_26_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
116 |
+
tensor<int32, [4]> transpose_27_perm_0 = const()[name = string("transpose_27_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
117 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_27 = transpose(perm = transpose_27_perm_0, x = k_7_cast_fp16)[name = string("transpose_53")];
|
118 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_26 = transpose(perm = transpose_26_perm_0, x = q_7_cast_fp16)[name = string("transpose_54")];
|
119 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_3_cast_fp16 = matmul(transpose_x = qk_3_transpose_x_0, transpose_y = qk_3_transpose_y_0, x = transpose_26, y = transpose_27)[name = string("qk_3_cast_fp16")];
|
120 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_242_cast_fp16 = softmax(axis = var_178, x = qk_3_cast_fp16)[name = string("op_242_cast_fp16")];
|
121 |
+
bool var_244_transpose_x_0 = const()[name = string("op_244_transpose_x_0"), val = bool(false)];
|
122 |
+
bool var_244_transpose_y_0 = const()[name = string("op_244_transpose_y_0"), val = bool(false)];
|
123 |
+
tensor<fp16, [1, 8, 1500, 64]> v_7_cast_fp16 = transpose(perm = var_238, x = var_237_cast_fp16)[name = string("transpose_55")];
|
124 |
+
tensor<fp16, [1, 8, 1500, 64]> var_244_cast_fp16 = matmul(transpose_x = var_244_transpose_x_0, transpose_y = var_244_transpose_y_0, x = var_242_cast_fp16, y = v_7_cast_fp16)[name = string("op_244_cast_fp16")];
|
125 |
+
tensor<int32, [4]> var_245 = const()[name = string("op_245"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
126 |
+
tensor<int32, [3]> concat_1 = const()[name = string("concat_1"), val = tensor<int32, [3]>([1, 1500, 512])];
|
127 |
+
tensor<fp16, [1, 1500, 8, 64]> var_246_cast_fp16 = transpose(perm = var_245, x = var_244_cast_fp16)[name = string("transpose_52")];
|
128 |
+
tensor<fp16, [1, 1500, 512]> x_23_cast_fp16 = reshape(shape = concat_1, x = var_246_cast_fp16)[name = string("x_23_cast_fp16")];
|
129 |
+
tensor<fp16, [512, 512]> var_250_to_fp16 = const()[name = string("op_250_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11240256)))];
|
130 |
+
tensor<fp16, [512]> var_251_to_fp16 = const()[name = string("op_251_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11764608)))];
|
131 |
+
tensor<fp16, [1, 1500, 512]> linear_9_cast_fp16 = linear(bias = var_251_to_fp16, weight = var_250_to_fp16, x = x_23_cast_fp16)[name = string("linear_9_cast_fp16")];
|
132 |
+
tensor<fp16, [1, 1500, 512]> x_25_cast_fp16 = add(x = x_19_cast_fp16, y = linear_9_cast_fp16)[name = string("x_25_cast_fp16")];
|
133 |
+
tensor<int32, [1]> var_258_axes_0 = const()[name = string("op_258_axes_0"), val = tensor<int32, [1]>([-1])];
|
134 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_weight_to_fp16 = const()[name = string("blocks_1_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11765696)))];
|
135 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_bias_to_fp16 = const()[name = string("blocks_1_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11766784)))];
|
136 |
+
tensor<fp16, [1, 1500, 512]> var_258_cast_fp16 = layer_norm(axes = var_258_axes_0, beta = blocks_1_mlp_ln_bias_to_fp16, epsilon = var_184_to_fp16, gamma = blocks_1_mlp_ln_weight_to_fp16, x = x_25_cast_fp16)[name = string("op_258_cast_fp16")];
|
137 |
+
tensor<fp16, [2048, 512]> var_267_to_fp16 = const()[name = string("op_267_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(11767872)))];
|
138 |
+
tensor<fp16, [2048]> var_268_to_fp16 = const()[name = string("op_268_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(13865088)))];
|
139 |
+
tensor<fp16, [1, 1500, 2048]> linear_10_cast_fp16 = linear(bias = var_268_to_fp16, weight = var_267_to_fp16, x = var_258_cast_fp16)[name = string("linear_10_cast_fp16")];
|
140 |
+
string x_29_mode_0 = const()[name = string("x_29_mode_0"), val = string("EXACT")];
|
141 |
+
tensor<fp16, [1, 1500, 2048]> x_29_cast_fp16 = gelu(mode = x_29_mode_0, x = linear_10_cast_fp16)[name = string("x_29_cast_fp16")];
|
142 |
+
tensor<fp16, [512, 2048]> var_273_to_fp16 = const()[name = string("op_273_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(13869248)))];
|
143 |
+
tensor<fp16, [512]> var_274_to_fp16 = const()[name = string("op_274_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15966464)))];
|
144 |
+
tensor<fp16, [1, 1500, 512]> linear_11_cast_fp16 = linear(bias = var_274_to_fp16, weight = var_273_to_fp16, x = x_29_cast_fp16)[name = string("linear_11_cast_fp16")];
|
145 |
+
tensor<fp16, [1, 1500, 512]> x_31_cast_fp16 = add(x = x_25_cast_fp16, y = linear_11_cast_fp16)[name = string("x_31_cast_fp16")];
|
146 |
+
int32 var_284 = const()[name = string("op_284"), val = int32(-1)];
|
147 |
+
tensor<int32, [1]> var_300_axes_0 = const()[name = string("op_300_axes_0"), val = tensor<int32, [1]>([-1])];
|
148 |
+
tensor<fp16, [512]> blocks_2_attn_ln_weight_to_fp16 = const()[name = string("blocks_2_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15967552)))];
|
149 |
+
tensor<fp16, [512]> blocks_2_attn_ln_bias_to_fp16 = const()[name = string("blocks_2_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15968640)))];
|
150 |
+
fp16 var_290_to_fp16 = const()[name = string("op_290_to_fp16"), val = fp16(0x1.5p-17)];
|
151 |
+
tensor<fp16, [1, 1500, 512]> var_300_cast_fp16 = layer_norm(axes = var_300_axes_0, beta = blocks_2_attn_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_attn_ln_weight_to_fp16, x = x_31_cast_fp16)[name = string("op_300_cast_fp16")];
|
152 |
+
tensor<fp16, [512, 512]> var_311_to_fp16 = const()[name = string("op_311_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(15969728)))];
|
153 |
+
tensor<fp16, [512]> var_312_to_fp16 = const()[name = string("op_312_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16494080)))];
|
154 |
+
tensor<fp16, [1, 1500, 512]> linear_12_cast_fp16 = linear(bias = var_312_to_fp16, weight = var_311_to_fp16, x = var_300_cast_fp16)[name = string("linear_12_cast_fp16")];
|
155 |
+
tensor<fp16, [512, 512]> var_315_to_fp16 = const()[name = string("op_315_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(16495168)))];
|
156 |
+
tensor<fp16, [1, 1500, 512]> linear_13_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_315_to_fp16, x = var_300_cast_fp16)[name = string("linear_13_cast_fp16")];
|
157 |
+
tensor<fp16, [512, 512]> var_319_to_fp16 = const()[name = string("op_319_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(17019520)))];
|
158 |
+
tensor<fp16, [512]> var_320_to_fp16 = const()[name = string("op_320_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(17543872)))];
|
159 |
+
tensor<fp16, [1, 1500, 512]> linear_14_cast_fp16 = linear(bias = var_320_to_fp16, weight = var_319_to_fp16, x = var_300_cast_fp16)[name = string("linear_14_cast_fp16")];
|
160 |
+
tensor<int32, [4]> var_328 = const()[name = string("op_328"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
161 |
+
tensor<fp16, [1, 1500, 8, 64]> var_329_cast_fp16 = reshape(shape = var_328, x = linear_12_cast_fp16)[name = string("op_329_cast_fp16")];
|
162 |
+
tensor<fp16, [1, 1, 1, 1]> const_46_to_fp16 = const()[name = string("const_46_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
163 |
+
tensor<fp16, [1, 1500, 8, 64]> q_11_cast_fp16 = mul(x = var_329_cast_fp16, y = const_46_to_fp16)[name = string("q_11_cast_fp16")];
|
164 |
+
tensor<int32, [4]> var_335 = const()[name = string("op_335"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
165 |
+
tensor<fp16, [1, 1500, 8, 64]> var_336_cast_fp16 = reshape(shape = var_335, x = linear_13_cast_fp16)[name = string("op_336_cast_fp16")];
|
166 |
+
tensor<fp16, [1, 1, 1, 1]> const_47_to_fp16 = const()[name = string("const_47_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
167 |
+
tensor<fp16, [1, 1500, 8, 64]> k_11_cast_fp16 = mul(x = var_336_cast_fp16, y = const_47_to_fp16)[name = string("k_11_cast_fp16")];
|
168 |
+
tensor<int32, [4]> var_342 = const()[name = string("op_342"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
169 |
+
tensor<fp16, [1, 1500, 8, 64]> var_343_cast_fp16 = reshape(shape = var_342, x = linear_14_cast_fp16)[name = string("op_343_cast_fp16")];
|
170 |
+
tensor<int32, [4]> var_344 = const()[name = string("op_344"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
171 |
+
bool qk_5_transpose_x_0 = const()[name = string("qk_5_transpose_x_0"), val = bool(false)];
|
172 |
+
bool qk_5_transpose_y_0 = const()[name = string("qk_5_transpose_y_0"), val = bool(false)];
|
173 |
+
tensor<int32, [4]> transpose_28_perm_0 = const()[name = string("transpose_28_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
174 |
+
tensor<int32, [4]> transpose_29_perm_0 = const()[name = string("transpose_29_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
175 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_29 = transpose(perm = transpose_29_perm_0, x = k_11_cast_fp16)[name = string("transpose_49")];
|
176 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_28 = transpose(perm = transpose_28_perm_0, x = q_11_cast_fp16)[name = string("transpose_50")];
|
177 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_5_cast_fp16 = matmul(transpose_x = qk_5_transpose_x_0, transpose_y = qk_5_transpose_y_0, x = transpose_28, y = transpose_29)[name = string("qk_5_cast_fp16")];
|
178 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_348_cast_fp16 = softmax(axis = var_284, x = qk_5_cast_fp16)[name = string("op_348_cast_fp16")];
|
179 |
+
bool var_350_transpose_x_0 = const()[name = string("op_350_transpose_x_0"), val = bool(false)];
|
180 |
+
bool var_350_transpose_y_0 = const()[name = string("op_350_transpose_y_0"), val = bool(false)];
|
181 |
+
tensor<fp16, [1, 8, 1500, 64]> v_11_cast_fp16 = transpose(perm = var_344, x = var_343_cast_fp16)[name = string("transpose_51")];
|
182 |
+
tensor<fp16, [1, 8, 1500, 64]> var_350_cast_fp16 = matmul(transpose_x = var_350_transpose_x_0, transpose_y = var_350_transpose_y_0, x = var_348_cast_fp16, y = v_11_cast_fp16)[name = string("op_350_cast_fp16")];
|
183 |
+
tensor<int32, [4]> var_351 = const()[name = string("op_351"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
184 |
+
tensor<int32, [3]> concat_2 = const()[name = string("concat_2"), val = tensor<int32, [3]>([1, 1500, 512])];
|
185 |
+
tensor<fp16, [1, 1500, 8, 64]> var_352_cast_fp16 = transpose(perm = var_351, x = var_350_cast_fp16)[name = string("transpose_48")];
|
186 |
+
tensor<fp16, [1, 1500, 512]> x_35_cast_fp16 = reshape(shape = concat_2, x = var_352_cast_fp16)[name = string("x_35_cast_fp16")];
|
187 |
+
tensor<fp16, [512, 512]> var_356_to_fp16 = const()[name = string("op_356_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(17544960)))];
|
188 |
+
tensor<fp16, [512]> var_357_to_fp16 = const()[name = string("op_357_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(18069312)))];
|
189 |
+
tensor<fp16, [1, 1500, 512]> linear_15_cast_fp16 = linear(bias = var_357_to_fp16, weight = var_356_to_fp16, x = x_35_cast_fp16)[name = string("linear_15_cast_fp16")];
|
190 |
+
tensor<fp16, [1, 1500, 512]> x_37_cast_fp16 = add(x = x_31_cast_fp16, y = linear_15_cast_fp16)[name = string("x_37_cast_fp16")];
|
191 |
+
tensor<int32, [1]> var_364_axes_0 = const()[name = string("op_364_axes_0"), val = tensor<int32, [1]>([-1])];
|
192 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_weight_to_fp16 = const()[name = string("blocks_2_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(18070400)))];
|
193 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_bias_to_fp16 = const()[name = string("blocks_2_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(18071488)))];
|
194 |
+
tensor<fp16, [1, 1500, 512]> var_364_cast_fp16 = layer_norm(axes = var_364_axes_0, beta = blocks_2_mlp_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_mlp_ln_weight_to_fp16, x = x_37_cast_fp16)[name = string("op_364_cast_fp16")];
|
195 |
+
tensor<fp16, [2048, 512]> var_373_to_fp16 = const()[name = string("op_373_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(18072576)))];
|
196 |
+
tensor<fp16, [2048]> var_374_to_fp16 = const()[name = string("op_374_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(20169792)))];
|
197 |
+
tensor<fp16, [1, 1500, 2048]> linear_16_cast_fp16 = linear(bias = var_374_to_fp16, weight = var_373_to_fp16, x = var_364_cast_fp16)[name = string("linear_16_cast_fp16")];
|
198 |
+
string x_41_mode_0 = const()[name = string("x_41_mode_0"), val = string("EXACT")];
|
199 |
+
tensor<fp16, [1, 1500, 2048]> x_41_cast_fp16 = gelu(mode = x_41_mode_0, x = linear_16_cast_fp16)[name = string("x_41_cast_fp16")];
|
200 |
+
tensor<fp16, [512, 2048]> var_379_to_fp16 = const()[name = string("op_379_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(20173952)))];
|
201 |
+
tensor<fp16, [512]> var_380_to_fp16 = const()[name = string("op_380_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22271168)))];
|
202 |
+
tensor<fp16, [1, 1500, 512]> linear_17_cast_fp16 = linear(bias = var_380_to_fp16, weight = var_379_to_fp16, x = x_41_cast_fp16)[name = string("linear_17_cast_fp16")];
|
203 |
+
tensor<fp16, [1, 1500, 512]> x_43_cast_fp16 = add(x = x_37_cast_fp16, y = linear_17_cast_fp16)[name = string("x_43_cast_fp16")];
|
204 |
+
int32 var_390 = const()[name = string("op_390"), val = int32(-1)];
|
205 |
+
tensor<int32, [1]> var_406_axes_0 = const()[name = string("op_406_axes_0"), val = tensor<int32, [1]>([-1])];
|
206 |
+
tensor<fp16, [512]> blocks_3_attn_ln_weight_to_fp16 = const()[name = string("blocks_3_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22272256)))];
|
207 |
+
tensor<fp16, [512]> blocks_3_attn_ln_bias_to_fp16 = const()[name = string("blocks_3_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22273344)))];
|
208 |
+
fp16 var_396_to_fp16 = const()[name = string("op_396_to_fp16"), val = fp16(0x1.5p-17)];
|
209 |
+
tensor<fp16, [1, 1500, 512]> var_406_cast_fp16 = layer_norm(axes = var_406_axes_0, beta = blocks_3_attn_ln_bias_to_fp16, epsilon = var_396_to_fp16, gamma = blocks_3_attn_ln_weight_to_fp16, x = x_43_cast_fp16)[name = string("op_406_cast_fp16")];
|
210 |
+
tensor<fp16, [512, 512]> var_417_to_fp16 = const()[name = string("op_417_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22274432)))];
|
211 |
+
tensor<fp16, [512]> var_418_to_fp16 = const()[name = string("op_418_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22798784)))];
|
212 |
+
tensor<fp16, [1, 1500, 512]> linear_18_cast_fp16 = linear(bias = var_418_to_fp16, weight = var_417_to_fp16, x = var_406_cast_fp16)[name = string("linear_18_cast_fp16")];
|
213 |
+
tensor<fp16, [512, 512]> var_421_to_fp16 = const()[name = string("op_421_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(22799872)))];
|
214 |
+
tensor<fp16, [1, 1500, 512]> linear_19_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_421_to_fp16, x = var_406_cast_fp16)[name = string("linear_19_cast_fp16")];
|
215 |
+
tensor<fp16, [512, 512]> var_425_to_fp16 = const()[name = string("op_425_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(23324224)))];
|
216 |
+
tensor<fp16, [512]> var_426_to_fp16 = const()[name = string("op_426_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(23848576)))];
|
217 |
+
tensor<fp16, [1, 1500, 512]> linear_20_cast_fp16 = linear(bias = var_426_to_fp16, weight = var_425_to_fp16, x = var_406_cast_fp16)[name = string("linear_20_cast_fp16")];
|
218 |
+
tensor<int32, [4]> var_434 = const()[name = string("op_434"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
219 |
+
tensor<fp16, [1, 1500, 8, 64]> var_435_cast_fp16 = reshape(shape = var_434, x = linear_18_cast_fp16)[name = string("op_435_cast_fp16")];
|
220 |
+
tensor<fp16, [1, 1, 1, 1]> const_48_to_fp16 = const()[name = string("const_48_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
221 |
+
tensor<fp16, [1, 1500, 8, 64]> q_15_cast_fp16 = mul(x = var_435_cast_fp16, y = const_48_to_fp16)[name = string("q_15_cast_fp16")];
|
222 |
+
tensor<int32, [4]> var_441 = const()[name = string("op_441"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
223 |
+
tensor<fp16, [1, 1500, 8, 64]> var_442_cast_fp16 = reshape(shape = var_441, x = linear_19_cast_fp16)[name = string("op_442_cast_fp16")];
|
224 |
+
tensor<fp16, [1, 1, 1, 1]> const_49_to_fp16 = const()[name = string("const_49_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
225 |
+
tensor<fp16, [1, 1500, 8, 64]> k_15_cast_fp16 = mul(x = var_442_cast_fp16, y = const_49_to_fp16)[name = string("k_15_cast_fp16")];
|
226 |
+
tensor<int32, [4]> var_448 = const()[name = string("op_448"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
227 |
+
tensor<fp16, [1, 1500, 8, 64]> var_449_cast_fp16 = reshape(shape = var_448, x = linear_20_cast_fp16)[name = string("op_449_cast_fp16")];
|
228 |
+
tensor<int32, [4]> var_450 = const()[name = string("op_450"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
229 |
+
bool qk_7_transpose_x_0 = const()[name = string("qk_7_transpose_x_0"), val = bool(false)];
|
230 |
+
bool qk_7_transpose_y_0 = const()[name = string("qk_7_transpose_y_0"), val = bool(false)];
|
231 |
+
tensor<int32, [4]> transpose_30_perm_0 = const()[name = string("transpose_30_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
232 |
+
tensor<int32, [4]> transpose_31_perm_0 = const()[name = string("transpose_31_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
233 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_31 = transpose(perm = transpose_31_perm_0, x = k_15_cast_fp16)[name = string("transpose_45")];
|
234 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_30 = transpose(perm = transpose_30_perm_0, x = q_15_cast_fp16)[name = string("transpose_46")];
|
235 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_7_cast_fp16 = matmul(transpose_x = qk_7_transpose_x_0, transpose_y = qk_7_transpose_y_0, x = transpose_30, y = transpose_31)[name = string("qk_7_cast_fp16")];
|
236 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_454_cast_fp16 = softmax(axis = var_390, x = qk_7_cast_fp16)[name = string("op_454_cast_fp16")];
|
237 |
+
bool var_456_transpose_x_0 = const()[name = string("op_456_transpose_x_0"), val = bool(false)];
|
238 |
+
bool var_456_transpose_y_0 = const()[name = string("op_456_transpose_y_0"), val = bool(false)];
|
239 |
+
tensor<fp16, [1, 8, 1500, 64]> v_15_cast_fp16 = transpose(perm = var_450, x = var_449_cast_fp16)[name = string("transpose_47")];
|
240 |
+
tensor<fp16, [1, 8, 1500, 64]> var_456_cast_fp16 = matmul(transpose_x = var_456_transpose_x_0, transpose_y = var_456_transpose_y_0, x = var_454_cast_fp16, y = v_15_cast_fp16)[name = string("op_456_cast_fp16")];
|
241 |
+
tensor<int32, [4]> var_457 = const()[name = string("op_457"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
242 |
+
tensor<int32, [3]> concat_3 = const()[name = string("concat_3"), val = tensor<int32, [3]>([1, 1500, 512])];
|
243 |
+
tensor<fp16, [1, 1500, 8, 64]> var_458_cast_fp16 = transpose(perm = var_457, x = var_456_cast_fp16)[name = string("transpose_44")];
|
244 |
+
tensor<fp16, [1, 1500, 512]> x_47_cast_fp16 = reshape(shape = concat_3, x = var_458_cast_fp16)[name = string("x_47_cast_fp16")];
|
245 |
+
tensor<fp16, [512, 512]> var_462_to_fp16 = const()[name = string("op_462_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(23849664)))];
|
246 |
+
tensor<fp16, [512]> var_463_to_fp16 = const()[name = string("op_463_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(24374016)))];
|
247 |
+
tensor<fp16, [1, 1500, 512]> linear_21_cast_fp16 = linear(bias = var_463_to_fp16, weight = var_462_to_fp16, x = x_47_cast_fp16)[name = string("linear_21_cast_fp16")];
|
248 |
+
tensor<fp16, [1, 1500, 512]> x_49_cast_fp16 = add(x = x_43_cast_fp16, y = linear_21_cast_fp16)[name = string("x_49_cast_fp16")];
|
249 |
+
tensor<int32, [1]> var_470_axes_0 = const()[name = string("op_470_axes_0"), val = tensor<int32, [1]>([-1])];
|
250 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_weight_to_fp16 = const()[name = string("blocks_3_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(24375104)))];
|
251 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_bias_to_fp16 = const()[name = string("blocks_3_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(24376192)))];
|
252 |
+
tensor<fp16, [1, 1500, 512]> var_470_cast_fp16 = layer_norm(axes = var_470_axes_0, beta = blocks_3_mlp_ln_bias_to_fp16, epsilon = var_396_to_fp16, gamma = blocks_3_mlp_ln_weight_to_fp16, x = x_49_cast_fp16)[name = string("op_470_cast_fp16")];
|
253 |
+
tensor<fp16, [2048, 512]> var_479_to_fp16 = const()[name = string("op_479_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(24377280)))];
|
254 |
+
tensor<fp16, [2048]> var_480_to_fp16 = const()[name = string("op_480_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(26474496)))];
|
255 |
+
tensor<fp16, [1, 1500, 2048]> linear_22_cast_fp16 = linear(bias = var_480_to_fp16, weight = var_479_to_fp16, x = var_470_cast_fp16)[name = string("linear_22_cast_fp16")];
|
256 |
+
string x_53_mode_0 = const()[name = string("x_53_mode_0"), val = string("EXACT")];
|
257 |
+
tensor<fp16, [1, 1500, 2048]> x_53_cast_fp16 = gelu(mode = x_53_mode_0, x = linear_22_cast_fp16)[name = string("x_53_cast_fp16")];
|
258 |
+
tensor<fp16, [512, 2048]> var_485_to_fp16 = const()[name = string("op_485_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(26478656)))];
|
259 |
+
tensor<fp16, [512]> var_486_to_fp16 = const()[name = string("op_486_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(28575872)))];
|
260 |
+
tensor<fp16, [1, 1500, 512]> linear_23_cast_fp16 = linear(bias = var_486_to_fp16, weight = var_485_to_fp16, x = x_53_cast_fp16)[name = string("linear_23_cast_fp16")];
|
261 |
+
tensor<fp16, [1, 1500, 512]> x_55_cast_fp16 = add(x = x_49_cast_fp16, y = linear_23_cast_fp16)[name = string("x_55_cast_fp16")];
|
262 |
+
int32 var_496 = const()[name = string("op_496"), val = int32(-1)];
|
263 |
+
tensor<int32, [1]> var_512_axes_0 = const()[name = string("op_512_axes_0"), val = tensor<int32, [1]>([-1])];
|
264 |
+
tensor<fp16, [512]> blocks_4_attn_ln_weight_to_fp16 = const()[name = string("blocks_4_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(28576960)))];
|
265 |
+
tensor<fp16, [512]> blocks_4_attn_ln_bias_to_fp16 = const()[name = string("blocks_4_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(28578048)))];
|
266 |
+
fp16 var_502_to_fp16 = const()[name = string("op_502_to_fp16"), val = fp16(0x1.5p-17)];
|
267 |
+
tensor<fp16, [1, 1500, 512]> var_512_cast_fp16 = layer_norm(axes = var_512_axes_0, beta = blocks_4_attn_ln_bias_to_fp16, epsilon = var_502_to_fp16, gamma = blocks_4_attn_ln_weight_to_fp16, x = x_55_cast_fp16)[name = string("op_512_cast_fp16")];
|
268 |
+
tensor<fp16, [512, 512]> var_523_to_fp16 = const()[name = string("op_523_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(28579136)))];
|
269 |
+
tensor<fp16, [512]> var_524_to_fp16 = const()[name = string("op_524_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(29103488)))];
|
270 |
+
tensor<fp16, [1, 1500, 512]> linear_24_cast_fp16 = linear(bias = var_524_to_fp16, weight = var_523_to_fp16, x = var_512_cast_fp16)[name = string("linear_24_cast_fp16")];
|
271 |
+
tensor<fp16, [512, 512]> var_527_to_fp16 = const()[name = string("op_527_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(29104576)))];
|
272 |
+
tensor<fp16, [1, 1500, 512]> linear_25_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_527_to_fp16, x = var_512_cast_fp16)[name = string("linear_25_cast_fp16")];
|
273 |
+
tensor<fp16, [512, 512]> var_531_to_fp16 = const()[name = string("op_531_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(29628928)))];
|
274 |
+
tensor<fp16, [512]> var_532_to_fp16 = const()[name = string("op_532_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30153280)))];
|
275 |
+
tensor<fp16, [1, 1500, 512]> linear_26_cast_fp16 = linear(bias = var_532_to_fp16, weight = var_531_to_fp16, x = var_512_cast_fp16)[name = string("linear_26_cast_fp16")];
|
276 |
+
tensor<int32, [4]> var_540 = const()[name = string("op_540"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
277 |
+
tensor<fp16, [1, 1500, 8, 64]> var_541_cast_fp16 = reshape(shape = var_540, x = linear_24_cast_fp16)[name = string("op_541_cast_fp16")];
|
278 |
+
tensor<fp16, [1, 1, 1, 1]> const_50_to_fp16 = const()[name = string("const_50_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
279 |
+
tensor<fp16, [1, 1500, 8, 64]> q_19_cast_fp16 = mul(x = var_541_cast_fp16, y = const_50_to_fp16)[name = string("q_19_cast_fp16")];
|
280 |
+
tensor<int32, [4]> var_547 = const()[name = string("op_547"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
281 |
+
tensor<fp16, [1, 1500, 8, 64]> var_548_cast_fp16 = reshape(shape = var_547, x = linear_25_cast_fp16)[name = string("op_548_cast_fp16")];
|
282 |
+
tensor<fp16, [1, 1, 1, 1]> const_51_to_fp16 = const()[name = string("const_51_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
283 |
+
tensor<fp16, [1, 1500, 8, 64]> k_19_cast_fp16 = mul(x = var_548_cast_fp16, y = const_51_to_fp16)[name = string("k_19_cast_fp16")];
|
284 |
+
tensor<int32, [4]> var_554 = const()[name = string("op_554"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
285 |
+
tensor<fp16, [1, 1500, 8, 64]> var_555_cast_fp16 = reshape(shape = var_554, x = linear_26_cast_fp16)[name = string("op_555_cast_fp16")];
|
286 |
+
tensor<int32, [4]> var_556 = const()[name = string("op_556"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
287 |
+
bool qk_9_transpose_x_0 = const()[name = string("qk_9_transpose_x_0"), val = bool(false)];
|
288 |
+
bool qk_9_transpose_y_0 = const()[name = string("qk_9_transpose_y_0"), val = bool(false)];
|
289 |
+
tensor<int32, [4]> transpose_32_perm_0 = const()[name = string("transpose_32_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
290 |
+
tensor<int32, [4]> transpose_33_perm_0 = const()[name = string("transpose_33_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
291 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_33 = transpose(perm = transpose_33_perm_0, x = k_19_cast_fp16)[name = string("transpose_41")];
|
292 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_32 = transpose(perm = transpose_32_perm_0, x = q_19_cast_fp16)[name = string("transpose_42")];
|
293 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_9_cast_fp16 = matmul(transpose_x = qk_9_transpose_x_0, transpose_y = qk_9_transpose_y_0, x = transpose_32, y = transpose_33)[name = string("qk_9_cast_fp16")];
|
294 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_560_cast_fp16 = softmax(axis = var_496, x = qk_9_cast_fp16)[name = string("op_560_cast_fp16")];
|
295 |
+
bool var_562_transpose_x_0 = const()[name = string("op_562_transpose_x_0"), val = bool(false)];
|
296 |
+
bool var_562_transpose_y_0 = const()[name = string("op_562_transpose_y_0"), val = bool(false)];
|
297 |
+
tensor<fp16, [1, 8, 1500, 64]> v_19_cast_fp16 = transpose(perm = var_556, x = var_555_cast_fp16)[name = string("transpose_43")];
|
298 |
+
tensor<fp16, [1, 8, 1500, 64]> var_562_cast_fp16 = matmul(transpose_x = var_562_transpose_x_0, transpose_y = var_562_transpose_y_0, x = var_560_cast_fp16, y = v_19_cast_fp16)[name = string("op_562_cast_fp16")];
|
299 |
+
tensor<int32, [4]> var_563 = const()[name = string("op_563"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
300 |
+
tensor<int32, [3]> concat_4 = const()[name = string("concat_4"), val = tensor<int32, [3]>([1, 1500, 512])];
|
301 |
+
tensor<fp16, [1, 1500, 8, 64]> var_564_cast_fp16 = transpose(perm = var_563, x = var_562_cast_fp16)[name = string("transpose_40")];
|
302 |
+
tensor<fp16, [1, 1500, 512]> x_59_cast_fp16 = reshape(shape = concat_4, x = var_564_cast_fp16)[name = string("x_59_cast_fp16")];
|
303 |
+
tensor<fp16, [512, 512]> var_568_to_fp16 = const()[name = string("op_568_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30154368)))];
|
304 |
+
tensor<fp16, [512]> var_569_to_fp16 = const()[name = string("op_569_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30678720)))];
|
305 |
+
tensor<fp16, [1, 1500, 512]> linear_27_cast_fp16 = linear(bias = var_569_to_fp16, weight = var_568_to_fp16, x = x_59_cast_fp16)[name = string("linear_27_cast_fp16")];
|
306 |
+
tensor<fp16, [1, 1500, 512]> x_61_cast_fp16 = add(x = x_55_cast_fp16, y = linear_27_cast_fp16)[name = string("x_61_cast_fp16")];
|
307 |
+
tensor<int32, [1]> var_576_axes_0 = const()[name = string("op_576_axes_0"), val = tensor<int32, [1]>([-1])];
|
308 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_weight_to_fp16 = const()[name = string("blocks_4_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30679808)))];
|
309 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_bias_to_fp16 = const()[name = string("blocks_4_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30680896)))];
|
310 |
+
tensor<fp16, [1, 1500, 512]> var_576_cast_fp16 = layer_norm(axes = var_576_axes_0, beta = blocks_4_mlp_ln_bias_to_fp16, epsilon = var_502_to_fp16, gamma = blocks_4_mlp_ln_weight_to_fp16, x = x_61_cast_fp16)[name = string("op_576_cast_fp16")];
|
311 |
+
tensor<fp16, [2048, 512]> var_585_to_fp16 = const()[name = string("op_585_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(30681984)))];
|
312 |
+
tensor<fp16, [2048]> var_586_to_fp16 = const()[name = string("op_586_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(32779200)))];
|
313 |
+
tensor<fp16, [1, 1500, 2048]> linear_28_cast_fp16 = linear(bias = var_586_to_fp16, weight = var_585_to_fp16, x = var_576_cast_fp16)[name = string("linear_28_cast_fp16")];
|
314 |
+
string x_65_mode_0 = const()[name = string("x_65_mode_0"), val = string("EXACT")];
|
315 |
+
tensor<fp16, [1, 1500, 2048]> x_65_cast_fp16 = gelu(mode = x_65_mode_0, x = linear_28_cast_fp16)[name = string("x_65_cast_fp16")];
|
316 |
+
tensor<fp16, [512, 2048]> var_591_to_fp16 = const()[name = string("op_591_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(32783360)))];
|
317 |
+
tensor<fp16, [512]> var_592_to_fp16 = const()[name = string("op_592_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34880576)))];
|
318 |
+
tensor<fp16, [1, 1500, 512]> linear_29_cast_fp16 = linear(bias = var_592_to_fp16, weight = var_591_to_fp16, x = x_65_cast_fp16)[name = string("linear_29_cast_fp16")];
|
319 |
+
tensor<fp16, [1, 1500, 512]> x_67_cast_fp16 = add(x = x_61_cast_fp16, y = linear_29_cast_fp16)[name = string("x_67_cast_fp16")];
|
320 |
+
int32 var_602 = const()[name = string("op_602"), val = int32(-1)];
|
321 |
+
tensor<int32, [1]> var_618_axes_0 = const()[name = string("op_618_axes_0"), val = tensor<int32, [1]>([-1])];
|
322 |
+
tensor<fp16, [512]> blocks_5_attn_ln_weight_to_fp16 = const()[name = string("blocks_5_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34881664)))];
|
323 |
+
tensor<fp16, [512]> blocks_5_attn_ln_bias_to_fp16 = const()[name = string("blocks_5_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34882752)))];
|
324 |
+
fp16 var_608_to_fp16 = const()[name = string("op_608_to_fp16"), val = fp16(0x1.5p-17)];
|
325 |
+
tensor<fp16, [1, 1500, 512]> var_618_cast_fp16 = layer_norm(axes = var_618_axes_0, beta = blocks_5_attn_ln_bias_to_fp16, epsilon = var_608_to_fp16, gamma = blocks_5_attn_ln_weight_to_fp16, x = x_67_cast_fp16)[name = string("op_618_cast_fp16")];
|
326 |
+
tensor<fp16, [512, 512]> var_629_to_fp16 = const()[name = string("op_629_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(34883840)))];
|
327 |
+
tensor<fp16, [512]> var_630_to_fp16 = const()[name = string("op_630_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(35408192)))];
|
328 |
+
tensor<fp16, [1, 1500, 512]> linear_30_cast_fp16 = linear(bias = var_630_to_fp16, weight = var_629_to_fp16, x = var_618_cast_fp16)[name = string("linear_30_cast_fp16")];
|
329 |
+
tensor<fp16, [512, 512]> var_633_to_fp16 = const()[name = string("op_633_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(35409280)))];
|
330 |
+
tensor<fp16, [1, 1500, 512]> linear_31_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = var_633_to_fp16, x = var_618_cast_fp16)[name = string("linear_31_cast_fp16")];
|
331 |
+
tensor<fp16, [512, 512]> var_637_to_fp16 = const()[name = string("op_637_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(35933632)))];
|
332 |
+
tensor<fp16, [512]> var_638_to_fp16 = const()[name = string("op_638_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36457984)))];
|
333 |
+
tensor<fp16, [1, 1500, 512]> linear_32_cast_fp16 = linear(bias = var_638_to_fp16, weight = var_637_to_fp16, x = var_618_cast_fp16)[name = string("linear_32_cast_fp16")];
|
334 |
+
tensor<int32, [4]> var_646 = const()[name = string("op_646"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
335 |
+
tensor<fp16, [1, 1500, 8, 64]> var_647_cast_fp16 = reshape(shape = var_646, x = linear_30_cast_fp16)[name = string("op_647_cast_fp16")];
|
336 |
+
tensor<fp16, [1, 1, 1, 1]> const_52_to_fp16 = const()[name = string("const_52_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
337 |
+
tensor<fp16, [1, 1500, 8, 64]> q_cast_fp16 = mul(x = var_647_cast_fp16, y = const_52_to_fp16)[name = string("q_cast_fp16")];
|
338 |
+
tensor<int32, [4]> var_653 = const()[name = string("op_653"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
339 |
+
tensor<fp16, [1, 1500, 8, 64]> var_654_cast_fp16 = reshape(shape = var_653, x = linear_31_cast_fp16)[name = string("op_654_cast_fp16")];
|
340 |
+
tensor<fp16, [1, 1, 1, 1]> const_53_to_fp16 = const()[name = string("const_53_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
341 |
+
tensor<fp16, [1, 1500, 8, 64]> k_cast_fp16 = mul(x = var_654_cast_fp16, y = const_53_to_fp16)[name = string("k_cast_fp16")];
|
342 |
+
tensor<int32, [4]> var_660 = const()[name = string("op_660"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
343 |
+
tensor<fp16, [1, 1500, 8, 64]> var_661_cast_fp16 = reshape(shape = var_660, x = linear_32_cast_fp16)[name = string("op_661_cast_fp16")];
|
344 |
+
tensor<int32, [4]> var_662 = const()[name = string("op_662"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
345 |
+
bool qk_transpose_x_0 = const()[name = string("qk_transpose_x_0"), val = bool(false)];
|
346 |
+
bool qk_transpose_y_0 = const()[name = string("qk_transpose_y_0"), val = bool(false)];
|
347 |
+
tensor<int32, [4]> transpose_34_perm_0 = const()[name = string("transpose_34_perm_0"), val = tensor<int32, [4]>([0, 2, -3, -1])];
|
348 |
+
tensor<int32, [4]> transpose_35_perm_0 = const()[name = string("transpose_35_perm_0"), val = tensor<int32, [4]>([0, 2, -1, -3])];
|
349 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_35 = transpose(perm = transpose_35_perm_0, x = k_cast_fp16)[name = string("transpose_37")];
|
350 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_34 = transpose(perm = transpose_34_perm_0, x = q_cast_fp16)[name = string("transpose_38")];
|
351 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_cast_fp16 = matmul(transpose_x = qk_transpose_x_0, transpose_y = qk_transpose_y_0, x = transpose_34, y = transpose_35)[name = string("qk_cast_fp16")];
|
352 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_666_cast_fp16 = softmax(axis = var_602, x = qk_cast_fp16)[name = string("op_666_cast_fp16")];
|
353 |
+
bool var_668_transpose_x_0 = const()[name = string("op_668_transpose_x_0"), val = bool(false)];
|
354 |
+
bool var_668_transpose_y_0 = const()[name = string("op_668_transpose_y_0"), val = bool(false)];
|
355 |
+
tensor<fp16, [1, 8, 1500, 64]> v_cast_fp16 = transpose(perm = var_662, x = var_661_cast_fp16)[name = string("transpose_39")];
|
356 |
+
tensor<fp16, [1, 8, 1500, 64]> var_668_cast_fp16 = matmul(transpose_x = var_668_transpose_x_0, transpose_y = var_668_transpose_y_0, x = var_666_cast_fp16, y = v_cast_fp16)[name = string("op_668_cast_fp16")];
|
357 |
+
tensor<int32, [4]> var_669 = const()[name = string("op_669"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
358 |
+
tensor<int32, [3]> concat_5 = const()[name = string("concat_5"), val = tensor<int32, [3]>([1, 1500, 512])];
|
359 |
+
tensor<fp16, [1, 1500, 8, 64]> var_670_cast_fp16 = transpose(perm = var_669, x = var_668_cast_fp16)[name = string("transpose_36")];
|
360 |
+
tensor<fp16, [1, 1500, 512]> x_71_cast_fp16 = reshape(shape = concat_5, x = var_670_cast_fp16)[name = string("x_71_cast_fp16")];
|
361 |
+
tensor<fp16, [512, 512]> var_674_to_fp16 = const()[name = string("op_674_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36459072)))];
|
362 |
+
tensor<fp16, [512]> var_675_to_fp16 = const()[name = string("op_675_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36983424)))];
|
363 |
+
tensor<fp16, [1, 1500, 512]> linear_33_cast_fp16 = linear(bias = var_675_to_fp16, weight = var_674_to_fp16, x = x_71_cast_fp16)[name = string("linear_33_cast_fp16")];
|
364 |
+
tensor<fp16, [1, 1500, 512]> x_73_cast_fp16 = add(x = x_67_cast_fp16, y = linear_33_cast_fp16)[name = string("x_73_cast_fp16")];
|
365 |
+
tensor<int32, [1]> var_682_axes_0 = const()[name = string("op_682_axes_0"), val = tensor<int32, [1]>([-1])];
|
366 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_weight_to_fp16 = const()[name = string("blocks_5_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36984512)))];
|
367 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_bias_to_fp16 = const()[name = string("blocks_5_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36985600)))];
|
368 |
+
tensor<fp16, [1, 1500, 512]> var_682_cast_fp16 = layer_norm(axes = var_682_axes_0, beta = blocks_5_mlp_ln_bias_to_fp16, epsilon = var_608_to_fp16, gamma = blocks_5_mlp_ln_weight_to_fp16, x = x_73_cast_fp16)[name = string("op_682_cast_fp16")];
|
369 |
+
tensor<fp16, [2048, 512]> var_691_to_fp16 = const()[name = string("op_691_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(36986688)))];
|
370 |
+
tensor<fp16, [2048]> var_692_to_fp16 = const()[name = string("op_692_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(39083904)))];
|
371 |
+
tensor<fp16, [1, 1500, 2048]> linear_34_cast_fp16 = linear(bias = var_692_to_fp16, weight = var_691_to_fp16, x = var_682_cast_fp16)[name = string("linear_34_cast_fp16")];
|
372 |
+
string x_77_mode_0 = const()[name = string("x_77_mode_0"), val = string("EXACT")];
|
373 |
+
tensor<fp16, [1, 1500, 2048]> x_77_cast_fp16 = gelu(mode = x_77_mode_0, x = linear_34_cast_fp16)[name = string("x_77_cast_fp16")];
|
374 |
+
tensor<fp16, [512, 2048]> var_697_to_fp16 = const()[name = string("op_697_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(39088064)))];
|
375 |
+
tensor<fp16, [512]> var_698_to_fp16 = const()[name = string("op_698_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41185280)))];
|
376 |
+
tensor<fp16, [1, 1500, 512]> linear_35_cast_fp16 = linear(bias = var_698_to_fp16, weight = var_697_to_fp16, x = x_77_cast_fp16)[name = string("linear_35_cast_fp16")];
|
377 |
+
tensor<fp16, [1, 1500, 512]> x_cast_fp16 = add(x = x_73_cast_fp16, y = linear_35_cast_fp16)[name = string("x_cast_fp16")];
|
378 |
+
tensor<int32, [1]> var_711_axes_0 = const()[name = string("op_711_axes_0"), val = tensor<int32, [1]>([-1])];
|
379 |
+
tensor<fp16, [512]> ln_post_weight_to_fp16 = const()[name = string("ln_post_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41186368)))];
|
380 |
+
tensor<fp16, [512]> ln_post_bias_to_fp16 = const()[name = string("ln_post_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(41187456)))];
|
381 |
+
fp16 var_702_to_fp16 = const()[name = string("op_702_to_fp16"), val = fp16(0x1.5p-17)];
|
382 |
+
tensor<fp16, [1, 1500, 512]> output = layer_norm(axes = var_711_axes_0, beta = ln_post_bias_to_fp16, epsilon = var_702_to_fp16, gamma = ln_post_weight_to_fp16, x = x_cast_fp16)[name = string("op_711_cast_fp16")];
|
383 |
+
} -> (output);
|
384 |
+
}
|
base/encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c45bee989219532c4cec616d439c51f280ac9d7b04f7847c4b7d7daba1d47523
|
3 |
+
size 41188544
|
base/model_dims.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"n_mels": 80,
|
3 |
+
"n_audio_ctx": 1500,
|
4 |
+
"n_audio_state": 512,
|
5 |
+
"n_audio_head": 8,
|
6 |
+
"n_audio_layer": 6,
|
7 |
+
"n_vocab": 51865,
|
8 |
+
"n_text_ctx": 448,
|
9 |
+
"n_text_state": 512,
|
10 |
+
"n_text_head": 8,
|
11 |
+
"n_text_layer": 6
|
12 |
+
}
|
compile_model.sh
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
for d in work/*
|
4 |
+
do
|
5 |
+
echo $d
|
6 |
+
pushd $d >/dev/null
|
7 |
+
|
8 |
+
if [ -d encoder ]; then
|
9 |
+
xcrun coremlcompiler compile encoder/chunked_pipeline.mlpackage .
|
10 |
+
rm -rf encoder.mlmodelc
|
11 |
+
mv chunked_pipeline.mlmodelc encoder.mlmodelc
|
12 |
+
else
|
13 |
+
xcrun coremlcompiler compile encoder.mlpackage .
|
14 |
+
fi
|
15 |
+
xcrun coremlcompiler compile decoder_first.mlpackage .
|
16 |
+
xcrun coremlcompiler compile decoder_second.mlpackage .
|
17 |
+
|
18 |
+
popd >/dev/null
|
19 |
+
done
|
20 |
+
|
21 |
+
mkdir -p output
|
22 |
+
for d in work/*
|
23 |
+
do
|
24 |
+
out=${d/work/output}
|
25 |
+
mkdir -p $out
|
26 |
+
mv $d/*.mlmodelc $d/model_dims.json $out/
|
27 |
+
done
|
28 |
+
|
29 |
+
mkdir -p index
|
30 |
+
for d in output/*
|
31 |
+
do
|
32 |
+
model=${d##*/}
|
33 |
+
(cd $d && find * -type f) > index/$model
|
34 |
+
done
|
index/base
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/weights/weight.bin
|
12 |
+
encoder.mlmodelc/metadata.json
|
13 |
+
encoder.mlmodelc/model.mil
|
14 |
+
encoder.mlmodelc/coremldata.bin
|
15 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
16 |
+
model_dims.json
|
index/large-v2
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/metadata.json
|
12 |
+
encoder.mlmodelc/model0/weights/0-weight.bin
|
13 |
+
encoder.mlmodelc/model0/model.mil
|
14 |
+
encoder.mlmodelc/model0/coremldata.bin
|
15 |
+
encoder.mlmodelc/model0/analytics/coremldata.bin
|
16 |
+
encoder.mlmodelc/model1/weights/1-weight.bin
|
17 |
+
encoder.mlmodelc/model1/model.mil
|
18 |
+
encoder.mlmodelc/model1/coremldata.bin
|
19 |
+
encoder.mlmodelc/model1/analytics/coremldata.bin
|
20 |
+
encoder.mlmodelc/coremldata.bin
|
21 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
22 |
+
model_dims.json
|
index/large-v3
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/metadata.json
|
12 |
+
encoder.mlmodelc/model0/weights/0-weight.bin
|
13 |
+
encoder.mlmodelc/model0/model.mil
|
14 |
+
encoder.mlmodelc/model0/coremldata.bin
|
15 |
+
encoder.mlmodelc/model0/analytics/coremldata.bin
|
16 |
+
encoder.mlmodelc/model1/weights/1-weight.bin
|
17 |
+
encoder.mlmodelc/model1/model.mil
|
18 |
+
encoder.mlmodelc/model1/coremldata.bin
|
19 |
+
encoder.mlmodelc/model1/analytics/coremldata.bin
|
20 |
+
encoder.mlmodelc/coremldata.bin
|
21 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
22 |
+
model_dims.json
|
index/medium
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/weights/weight.bin
|
12 |
+
encoder.mlmodelc/metadata.json
|
13 |
+
encoder.mlmodelc/model.mil
|
14 |
+
encoder.mlmodelc/coremldata.bin
|
15 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
16 |
+
model_dims.json
|
index/small
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/weights/weight.bin
|
12 |
+
encoder.mlmodelc/metadata.json
|
13 |
+
encoder.mlmodelc/model.mil
|
14 |
+
encoder.mlmodelc/coremldata.bin
|
15 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
16 |
+
model_dims.json
|
index/tiny
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
decoder_first.mlmodelc/weights/weight.bin
|
2 |
+
decoder_first.mlmodelc/metadata.json
|
3 |
+
decoder_first.mlmodelc/model.mil
|
4 |
+
decoder_first.mlmodelc/coremldata.bin
|
5 |
+
decoder_first.mlmodelc/analytics/coremldata.bin
|
6 |
+
decoder_second.mlmodelc/weights/weight.bin
|
7 |
+
decoder_second.mlmodelc/metadata.json
|
8 |
+
decoder_second.mlmodelc/model.mil
|
9 |
+
decoder_second.mlmodelc/coremldata.bin
|
10 |
+
decoder_second.mlmodelc/analytics/coremldata.bin
|
11 |
+
encoder.mlmodelc/weights/weight.bin
|
12 |
+
encoder.mlmodelc/metadata.json
|
13 |
+
encoder.mlmodelc/model.mil
|
14 |
+
encoder.mlmodelc/coremldata.bin
|
15 |
+
encoder.mlmodelc/analytics/coremldata.bin
|
16 |
+
model_dims.json
|
large-v2/decoder_first.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a564dfd67cfcb3c0ee8cd9f7ef9f303fbfc561e635709bd3a46c5870571079de
|
3 |
+
size 243
|
large-v2/decoder_first.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6214be9e110a102836fb1fdb960a2fb564e60f5d9e3d1e25a9b7f978309480e
|
3 |
+
size 453
|
large-v2/decoder_first.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "dummy",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.writeState" : 66,
|
23 |
+
"Shape" : 64,
|
24 |
+
"Ios18.linear" : 64,
|
25 |
+
"Identity" : 1,
|
26 |
+
"Ios18.gather" : 64,
|
27 |
+
"Ios18.concat" : 64,
|
28 |
+
"Ios18.sliceUpdate" : 66,
|
29 |
+
"Ios18.cast" : 128,
|
30 |
+
"Ios18.expandDims" : 64,
|
31 |
+
"Ios18.readState" : 66
|
32 |
+
},
|
33 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32, UInt16)",
|
34 |
+
"isUpdatable" : "0",
|
35 |
+
"stateSchema" : [
|
36 |
+
{
|
37 |
+
"dataType" : "Float16",
|
38 |
+
"isOptional" : "0",
|
39 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
40 |
+
"shortDescription" : "",
|
41 |
+
"shape" : "[32, 1, 448, 1280]",
|
42 |
+
"name" : "k_cache1",
|
43 |
+
"type" : "State"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"dataType" : "Float16",
|
47 |
+
"isOptional" : "0",
|
48 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
49 |
+
"shortDescription" : "",
|
50 |
+
"shape" : "[32, 1, 448, 1280]",
|
51 |
+
"name" : "v_cache1",
|
52 |
+
"type" : "State"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"dataType" : "Float16",
|
56 |
+
"isOptional" : "0",
|
57 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
58 |
+
"shortDescription" : "",
|
59 |
+
"shape" : "[32, 1, 1500, 1280]",
|
60 |
+
"name" : "k_cache2",
|
61 |
+
"type" : "State"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[32, 1, 1500, 1280]",
|
69 |
+
"name" : "v_cache2",
|
70 |
+
"type" : "State"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"availability" : {
|
74 |
+
"macOS" : "15.0",
|
75 |
+
"tvOS" : "18.0",
|
76 |
+
"visionOS" : "2.0",
|
77 |
+
"watchOS" : "11.0",
|
78 |
+
"iOS" : "18.0",
|
79 |
+
"macCatalyst" : "18.0"
|
80 |
+
},
|
81 |
+
"modelType" : {
|
82 |
+
"name" : "MLModelType_mlProgram"
|
83 |
+
},
|
84 |
+
"userDefinedMetadata" : {
|
85 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
86 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
87 |
+
"com.github.apple.coremltools.version" : "8.0"
|
88 |
+
},
|
89 |
+
"inputSchema" : [
|
90 |
+
{
|
91 |
+
"dataType" : "Float16",
|
92 |
+
"hasShapeFlexibility" : "1",
|
93 |
+
"isOptional" : "0",
|
94 |
+
"shapeFlexibility" : "1 × 1...1500 × 1280",
|
95 |
+
"shapeRange" : "[[1, 1], [1, 1500], [1280, 1280]]",
|
96 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1280)",
|
97 |
+
"type" : "MultiArray",
|
98 |
+
"shape" : "[1, 1, 1280]",
|
99 |
+
"name" : "audio_data",
|
100 |
+
"shortDescription" : ""
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"generatedClassName" : "decoder_first",
|
104 |
+
"method" : "predict"
|
105 |
+
}
|
106 |
+
]
|
large-v2/decoder_first.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
large-v2/decoder_first.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ac46c34d51832dd11fbc34c772a9a35a5fb4cace68406b7044dd4ba652dca1c
|
3 |
+
size 246506176
|
large-v2/decoder_second.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1afd3cf2ab05eb2b7268afb62f418b5df01b6b5d60d746bdeec2b5ad8d760f65
|
3 |
+
size 243
|
large-v2/decoder_second.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5601244df54c60a16c26b761742867d06c6ef440ab8b0776ce5f6d1b4875c95
|
3 |
+
size 487
|
large-v2/decoder_second.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "logits",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.linear" : 257,
|
23 |
+
"Ios18.readState" : 66,
|
24 |
+
"Ios18.expandDims" : 33,
|
25 |
+
"Ios18.sub" : 1,
|
26 |
+
"Ios18.matmul" : 128,
|
27 |
+
"Ios18.gelu" : 32,
|
28 |
+
"Ios18.gather" : 35,
|
29 |
+
"Ios18.concat" : 162,
|
30 |
+
"Shape" : 34,
|
31 |
+
"Ios18.add" : 161,
|
32 |
+
"Ios18.sliceUpdate" : 128,
|
33 |
+
"Ios18.sliceByIndex" : 257,
|
34 |
+
"Ios18.layerNorm" : 97,
|
35 |
+
"Ios18.cast" : 68,
|
36 |
+
"Ios18.transpose" : 256,
|
37 |
+
"Ios18.writeState" : 64,
|
38 |
+
"Ios18.reshape" : 256,
|
39 |
+
"Ios18.softmax" : 64,
|
40 |
+
"Ios18.mul" : 128
|
41 |
+
},
|
42 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32, UInt16)",
|
43 |
+
"isUpdatable" : "0",
|
44 |
+
"stateSchema" : [
|
45 |
+
{
|
46 |
+
"dataType" : "Float16",
|
47 |
+
"isOptional" : "0",
|
48 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
49 |
+
"shortDescription" : "",
|
50 |
+
"shape" : "[32, 1, 448, 1280]",
|
51 |
+
"name" : "k_cache1",
|
52 |
+
"type" : "State"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"dataType" : "Float16",
|
56 |
+
"isOptional" : "0",
|
57 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
58 |
+
"shortDescription" : "",
|
59 |
+
"shape" : "[32, 1, 448, 1280]",
|
60 |
+
"name" : "v_cache1",
|
61 |
+
"type" : "State"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[32, 1, 1500, 1280]",
|
69 |
+
"name" : "k_cache2",
|
70 |
+
"type" : "State"
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"dataType" : "Float16",
|
74 |
+
"isOptional" : "0",
|
75 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
76 |
+
"shortDescription" : "",
|
77 |
+
"shape" : "[32, 1, 1500, 1280]",
|
78 |
+
"name" : "v_cache2",
|
79 |
+
"type" : "State"
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"availability" : {
|
83 |
+
"macOS" : "15.0",
|
84 |
+
"tvOS" : "18.0",
|
85 |
+
"visionOS" : "2.0",
|
86 |
+
"watchOS" : "11.0",
|
87 |
+
"iOS" : "18.0",
|
88 |
+
"macCatalyst" : "18.0"
|
89 |
+
},
|
90 |
+
"modelType" : {
|
91 |
+
"name" : "MLModelType_mlProgram"
|
92 |
+
},
|
93 |
+
"userDefinedMetadata" : {
|
94 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
95 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
96 |
+
"com.github.apple.coremltools.version" : "8.0"
|
97 |
+
},
|
98 |
+
"inputSchema" : [
|
99 |
+
{
|
100 |
+
"dataType" : "Int32",
|
101 |
+
"hasShapeFlexibility" : "1",
|
102 |
+
"isOptional" : "0",
|
103 |
+
"shapeFlexibility" : "1 × 1...448",
|
104 |
+
"shapeRange" : "[[1, 1], [1, 448]]",
|
105 |
+
"formattedType" : "MultiArray (Int32 1 × 1)",
|
106 |
+
"type" : "MultiArray",
|
107 |
+
"shape" : "[1, 1]",
|
108 |
+
"name" : "token_data",
|
109 |
+
"shortDescription" : ""
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"dataType" : "Float16",
|
113 |
+
"hasShapeFlexibility" : "1",
|
114 |
+
"isOptional" : "0",
|
115 |
+
"shapeFlexibility" : "1 × 1...448",
|
116 |
+
"shapeRange" : "[[1, 1], [1, 448]]",
|
117 |
+
"formattedType" : "MultiArray (Float16 1 × 1)",
|
118 |
+
"type" : "MultiArray",
|
119 |
+
"shape" : "[1, 1]",
|
120 |
+
"name" : "offset_mask",
|
121 |
+
"shortDescription" : ""
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"generatedClassName" : "decoder_second",
|
125 |
+
"method" : "predict"
|
126 |
+
}
|
127 |
+
]
|
large-v2/decoder_second.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
large-v2/decoder_second.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf6ddb1f8892bfddf9f96b11c6b596934c1fe6c01839f81c06d8d2e094f19533
|
3 |
+
size 1607634802
|
large-v2/encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abf4666de503da73cee5379b4dfa17d4a3f06bff3c0c8e310d0a0e1cf2554f87
|
3 |
+
size 202
|
large-v2/encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e2ae6d3a42a2ca10398635e0b210846dcbc24a31184c93f9302694163bcadaf
|
3 |
+
size 196
|
large-v2/encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1500 × 1280)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1500, 1280]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.add" : 65,
|
23 |
+
"Ios18.reshape" : 128,
|
24 |
+
"Ios18.linear" : 192,
|
25 |
+
"Ios18.gelu" : 34,
|
26 |
+
"Ios18.matmul" : 64,
|
27 |
+
"Ios18.transpose" : 129,
|
28 |
+
"Ios18.layerNorm" : 65,
|
29 |
+
"Ios18.conv" : 2,
|
30 |
+
"Ios18.cast" : 4,
|
31 |
+
"Ios18.softmax" : 32,
|
32 |
+
"Ios18.mul" : 64
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"stateSchema" : [
|
37 |
+
|
38 |
+
],
|
39 |
+
"availability" : {
|
40 |
+
"macOS" : "15.0",
|
41 |
+
"tvOS" : "18.0",
|
42 |
+
"visionOS" : "2.0",
|
43 |
+
"watchOS" : "11.0",
|
44 |
+
"iOS" : "18.0",
|
45 |
+
"macCatalyst" : "18.0"
|
46 |
+
},
|
47 |
+
"modelType" : {
|
48 |
+
"name" : "MLModelType_pipeline",
|
49 |
+
"structure" : [
|
50 |
+
{
|
51 |
+
"name" : "MLModelType_mlProgram"
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"name" : "MLModelType_mlProgram"
|
55 |
+
}
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"userDefinedMetadata" : {
|
59 |
+
|
60 |
+
},
|
61 |
+
"inputSchema" : [
|
62 |
+
{
|
63 |
+
"hasShapeFlexibility" : "0",
|
64 |
+
"isOptional" : "0",
|
65 |
+
"dataType" : "Float16",
|
66 |
+
"formattedType" : "MultiArray (Float16 1 × 80 × 3000)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[1, 80, 3000]",
|
69 |
+
"name" : "logmel_data",
|
70 |
+
"type" : "MultiArray"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"generatedClassName" : "chunked_pipeline",
|
74 |
+
"method" : "predict"
|
75 |
+
}
|
76 |
+
]
|
large-v2/encoder.mlmodelc/model0/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8281049b2a65a3be541cfd9f949e84b8fe1c5251ce90e46da1626fed54e58a
|
3 |
+
size 108
|
large-v2/encoder.mlmodelc/model0/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a30736ebb8641d231fc84aa2d3d05770adb9603bdca174d439416450827b75a
|
3 |
+
size 200
|
large-v2/encoder.mlmodelc/model0/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
large-v2/encoder.mlmodelc/model0/weights/0-weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0d6315a62c6344e1bf4ac88f7f7c8408cc886645c98e8989f249229fd9e9c70
|
3 |
+
size 643945408
|
large-v2/encoder.mlmodelc/model1/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a8281049b2a65a3be541cfd9f949e84b8fe1c5251ce90e46da1626fed54e58a
|
3 |
+
size 108
|
large-v2/encoder.mlmodelc/model1/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70195139816248a2b1fbef695f96decb60b35af6f364f84a7d2293a3d0a09e11
|
3 |
+
size 196
|
large-v2/encoder.mlmodelc/model1/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
large-v2/encoder.mlmodelc/model1/weights/1-weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b18deffd43b1f394f0f9d6434ef3e042c9e0424f8b590891a5cb0c21e4951163
|
3 |
+
size 629660416
|
large-v2/model_dims.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"n_mels": 80,
|
3 |
+
"n_audio_ctx": 1500,
|
4 |
+
"n_audio_state": 1280,
|
5 |
+
"n_audio_head": 20,
|
6 |
+
"n_audio_layer": 32,
|
7 |
+
"n_vocab": 51865,
|
8 |
+
"n_text_ctx": 448,
|
9 |
+
"n_text_state": 1280,
|
10 |
+
"n_text_head": 20,
|
11 |
+
"n_text_layer": 32
|
12 |
+
}
|
large-v3/decoder_first.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a564dfd67cfcb3c0ee8cd9f7ef9f303fbfc561e635709bd3a46c5870571079de
|
3 |
+
size 243
|
large-v3/decoder_first.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6214be9e110a102836fb1fdb960a2fb564e60f5d9e3d1e25a9b7f978309480e
|
3 |
+
size 453
|
large-v3/decoder_first.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "dummy",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 9,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Ios18.writeState" : 66,
|
23 |
+
"Shape" : 64,
|
24 |
+
"Ios18.linear" : 64,
|
25 |
+
"Identity" : 1,
|
26 |
+
"Ios18.gather" : 64,
|
27 |
+
"Ios18.concat" : 64,
|
28 |
+
"Ios18.sliceUpdate" : 66,
|
29 |
+
"Ios18.cast" : 128,
|
30 |
+
"Ios18.expandDims" : 64,
|
31 |
+
"Ios18.readState" : 66
|
32 |
+
},
|
33 |
+
"computePrecision" : "Mixed (Float16, Int16, Int32, UInt16)",
|
34 |
+
"isUpdatable" : "0",
|
35 |
+
"stateSchema" : [
|
36 |
+
{
|
37 |
+
"dataType" : "Float16",
|
38 |
+
"isOptional" : "0",
|
39 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
40 |
+
"shortDescription" : "",
|
41 |
+
"shape" : "[32, 1, 448, 1280]",
|
42 |
+
"name" : "k_cache1",
|
43 |
+
"type" : "State"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"dataType" : "Float16",
|
47 |
+
"isOptional" : "0",
|
48 |
+
"formattedType" : "State (Float16 32 × 1 × 448 × 1280)",
|
49 |
+
"shortDescription" : "",
|
50 |
+
"shape" : "[32, 1, 448, 1280]",
|
51 |
+
"name" : "v_cache1",
|
52 |
+
"type" : "State"
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"dataType" : "Float16",
|
56 |
+
"isOptional" : "0",
|
57 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
58 |
+
"shortDescription" : "",
|
59 |
+
"shape" : "[32, 1, 1500, 1280]",
|
60 |
+
"name" : "k_cache2",
|
61 |
+
"type" : "State"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"dataType" : "Float16",
|
65 |
+
"isOptional" : "0",
|
66 |
+
"formattedType" : "State (Float16 32 × 1 × 1500 × 1280)",
|
67 |
+
"shortDescription" : "",
|
68 |
+
"shape" : "[32, 1, 1500, 1280]",
|
69 |
+
"name" : "v_cache2",
|
70 |
+
"type" : "State"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"availability" : {
|
74 |
+
"macOS" : "15.0",
|
75 |
+
"tvOS" : "18.0",
|
76 |
+
"visionOS" : "2.0",
|
77 |
+
"watchOS" : "11.0",
|
78 |
+
"iOS" : "18.0",
|
79 |
+
"macCatalyst" : "18.0"
|
80 |
+
},
|
81 |
+
"modelType" : {
|
82 |
+
"name" : "MLModelType_mlProgram"
|
83 |
+
},
|
84 |
+
"userDefinedMetadata" : {
|
85 |
+
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
86 |
+
"com.github.apple.coremltools.source" : "torch==2.4.1",
|
87 |
+
"com.github.apple.coremltools.version" : "8.0"
|
88 |
+
},
|
89 |
+
"inputSchema" : [
|
90 |
+
{
|
91 |
+
"dataType" : "Float16",
|
92 |
+
"hasShapeFlexibility" : "1",
|
93 |
+
"isOptional" : "0",
|
94 |
+
"shapeFlexibility" : "1 × 1...1500 × 1280",
|
95 |
+
"shapeRange" : "[[1, 1], [1, 1500], [1280, 1280]]",
|
96 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1280)",
|
97 |
+
"type" : "MultiArray",
|
98 |
+
"shape" : "[1, 1, 1280]",
|
99 |
+
"name" : "audio_data",
|
100 |
+
"shortDescription" : ""
|
101 |
+
}
|
102 |
+
],
|
103 |
+
"generatedClassName" : "decoder_first",
|
104 |
+
"method" : "predict"
|
105 |
+
}
|
106 |
+
]
|
large-v3/decoder_first.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
large-v3/decoder_first.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346ed969f2a1ddb144c4add194c7b2a9a7d7b4a2e536d1e4a2afbfe5a4f62818
|
3 |
+
size 246506176
|