Added model without flair embeddings
Browse files- loss.tsv +2 -2
 - pytorch_model.bin +2 -2
 - training.log +313 -331
 
    	
        loss.tsv
    CHANGED
    
    | 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            EPOCH	TIMESTAMP	BAD_EPOCHS	LEARNING_RATE	TRAIN_LOSS	DEV_LOSS	DEV_PRECISION	DEV_RECALL	DEV_F1	DEV_ACCURACY
         
     | 
| 2 | 
         
            -
            1	 
     | 
| 3 | 
         
            -
            2	 
     | 
| 
         | 
|
| 1 | 
         
             
            EPOCH	TIMESTAMP	BAD_EPOCHS	LEARNING_RATE	TRAIN_LOSS	DEV_LOSS	DEV_PRECISION	DEV_RECALL	DEV_F1	DEV_ACCURACY
         
     | 
| 2 | 
         
            +
            1	14:24:53	0	0.0100	0.291245240352544	0.06397613137960434	0.9724	0.9736	0.973	0.9477
         
     | 
| 3 | 
         
            +
            2	14:42:51	0	0.0100	0.13731835639464673	0.05747831612825394	0.9826	0.9863	0.9844	0.9696
         
     | 
    	
        pytorch_model.bin
    CHANGED
    
    | 
         @@ -1,3 +1,3 @@ 
     | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            -
            oid sha256: 
     | 
| 3 | 
         
            -
            size  
     | 
| 
         | 
|
| 1 | 
         
             
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:1c623f10dba949ae162389713d32ce968220b060cfad3fdb180300495a7f35cc
         
     | 
| 3 | 
         
            +
            size 714487533
         
     | 
    	
        training.log
    CHANGED
    
    | 
         @@ -1,408 +1,390 @@ 
     | 
|
| 1 | 
         
            -
            2022-10- 
     | 
| 2 | 
         
            -
            2022-10- 
     | 
| 3 | 
         
            -
              (embeddings):  
     | 
| 4 | 
         
            -
                ( 
     | 
| 5 | 
         
            -
                  ( 
     | 
| 6 | 
         
            -
                    ( 
     | 
| 7 | 
         
            -
             
     | 
| 8 | 
         
            -
             
     | 
| 9 | 
         
            -
             
     | 
| 10 | 
         
            -
             
     | 
| 11 | 
         
            -
             
     | 
| 12 | 
         
            -
             
     | 
| 13 | 
         
            -
                    ( 
     | 
| 14 | 
         
            -
                      ( 
     | 
| 15 | 
         
            -
                        ( 
     | 
| 16 | 
         
            -
                          ( 
     | 
| 17 | 
         
            -
                            ( 
     | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
            -
                              (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 22 | 
         
            -
                            )
         
     | 
| 23 | 
         
            -
                            (output): BertSelfOutput(
         
     | 
| 24 | 
         
            -
                              (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 25 | 
         
            -
                              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 26 | 
         
            -
                              (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 27 | 
         
            -
                            )
         
     | 
| 28 | 
         
            -
                          )
         
     | 
| 29 | 
         
            -
                          (intermediate): BertIntermediate(
         
     | 
| 30 | 
         
            -
                            (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 31 | 
         
            -
                            (intermediate_act_fn): GELUActivation()
         
     | 
| 32 | 
         
             
                          )
         
     | 
| 33 | 
         
            -
                          (output):  
     | 
| 34 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 35 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 36 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 37 | 
         
             
                          )
         
     | 
| 38 | 
         
             
                        )
         
     | 
| 39 | 
         
            -
                        ( 
     | 
| 40 | 
         
            -
                          ( 
     | 
| 41 | 
         
            -
             
     | 
| 42 | 
         
            -
             
     | 
| 43 | 
         
            -
             
     | 
| 44 | 
         
            -
             
     | 
| 45 | 
         
            -
             
     | 
| 46 | 
         
            -
             
     | 
| 47 | 
         
            -
             
     | 
| 48 | 
         
            -
             
     | 
| 49 | 
         
            -
             
     | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
            -
             
     | 
| 52 | 
         
            -
             
     | 
| 53 | 
         
            -
             
     | 
| 54 | 
         
            -
                            ( 
     | 
| 55 | 
         
            -
                            ( 
     | 
| 56 | 
         
             
                          )
         
     | 
| 57 | 
         
            -
                          (output):  
     | 
| 58 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 59 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 60 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 61 | 
         
             
                          )
         
     | 
| 62 | 
         
             
                        )
         
     | 
| 63 | 
         
            -
                        ( 
     | 
| 64 | 
         
            -
                          ( 
     | 
| 65 | 
         
            -
             
     | 
| 66 | 
         
            -
             
     | 
| 67 | 
         
            -
             
     | 
| 68 | 
         
            -
             
     | 
| 69 | 
         
            -
             
     | 
| 70 | 
         
            -
             
     | 
| 71 | 
         
            -
             
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
             
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
             
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
                            ( 
     | 
| 79 | 
         
            -
                            ( 
     | 
| 80 | 
         
             
                          )
         
     | 
| 81 | 
         
            -
                          (output):  
     | 
| 82 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 83 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 84 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 85 | 
         
             
                          )
         
     | 
| 86 | 
         
             
                        )
         
     | 
| 87 | 
         
            -
                        ( 
     | 
| 88 | 
         
            -
                          ( 
     | 
| 89 | 
         
            -
             
     | 
| 90 | 
         
            -
             
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         
            -
             
     | 
| 93 | 
         
            -
             
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         
            -
             
     | 
| 96 | 
         
            -
             
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         
            -
             
     | 
| 99 | 
         
            -
             
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                            ( 
     | 
| 103 | 
         
            -
                            ( 
     | 
| 104 | 
         
             
                          )
         
     | 
| 105 | 
         
            -
                          (output):  
     | 
| 106 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 107 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 108 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 109 | 
         
             
                          )
         
     | 
| 110 | 
         
             
                        )
         
     | 
| 111 | 
         
            -
                        ( 
     | 
| 112 | 
         
            -
                          ( 
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         
            -
             
     | 
| 119 | 
         
            -
             
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
             
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
             
     | 
| 124 | 
         
            -
             
     | 
| 125 | 
         
            -
             
     | 
| 126 | 
         
            -
                            ( 
     | 
| 127 | 
         
            -
                            ( 
     | 
| 128 | 
         
             
                          )
         
     | 
| 129 | 
         
            -
                          (output):  
     | 
| 130 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 131 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 132 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 133 | 
         
             
                          )
         
     | 
| 134 | 
         
             
                        )
         
     | 
| 135 | 
         
            -
                        ( 
     | 
| 136 | 
         
            -
                          ( 
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
             
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
             
     | 
| 141 | 
         
            -
             
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
             
     | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
             
     | 
| 148 | 
         
            -
             
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
                            ( 
     | 
| 151 | 
         
            -
                            ( 
     | 
| 152 | 
         
             
                          )
         
     | 
| 153 | 
         
            -
                          (output):  
     | 
| 154 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 155 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 156 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 157 | 
         
             
                          )
         
     | 
| 158 | 
         
             
                        )
         
     | 
| 159 | 
         
            -
                        ( 
     | 
| 160 | 
         
            -
                          ( 
     | 
| 161 | 
         
            -
             
     | 
| 162 | 
         
            -
             
     | 
| 163 | 
         
            -
             
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
             
     | 
| 166 | 
         
            -
             
     | 
| 167 | 
         
            -
             
     | 
| 168 | 
         
            -
             
     | 
| 169 | 
         
            -
             
     | 
| 170 | 
         
            -
             
     | 
| 171 | 
         
            -
             
     | 
| 172 | 
         
            -
             
     | 
| 173 | 
         
            -
             
     | 
| 174 | 
         
            -
                            ( 
     | 
| 175 | 
         
            -
                            ( 
     | 
| 176 | 
         
             
                          )
         
     | 
| 177 | 
         
            -
                          (output):  
     | 
| 178 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 179 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 180 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 181 | 
         
             
                          )
         
     | 
| 182 | 
         
             
                        )
         
     | 
| 183 | 
         
            -
                        ( 
     | 
| 184 | 
         
            -
                          ( 
     | 
| 185 | 
         
            -
             
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
             
     | 
| 188 | 
         
            -
             
     | 
| 189 | 
         
            -
             
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
             
     | 
| 194 | 
         
            -
             
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
             
     | 
| 197 | 
         
            -
             
     | 
| 198 | 
         
            -
                            ( 
     | 
| 199 | 
         
            -
                            ( 
     | 
| 200 | 
         
             
                          )
         
     | 
| 201 | 
         
            -
                          (output):  
     | 
| 202 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 203 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 204 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 205 | 
         
             
                          )
         
     | 
| 206 | 
         
             
                        )
         
     | 
| 207 | 
         
            -
                        ( 
     | 
| 208 | 
         
            -
                          ( 
     | 
| 209 | 
         
            -
             
     | 
| 210 | 
         
            -
             
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
             
     | 
| 213 | 
         
            -
             
     | 
| 214 | 
         
            -
             
     | 
| 215 | 
         
            -
             
     | 
| 216 | 
         
            -
             
     | 
| 217 | 
         
            -
             
     | 
| 218 | 
         
            -
             
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
             
     | 
| 221 | 
         
            -
             
     | 
| 222 | 
         
            -
                            ( 
     | 
| 223 | 
         
            -
                            ( 
     | 
| 224 | 
         
             
                          )
         
     | 
| 225 | 
         
            -
                          (output):  
     | 
| 226 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 227 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 228 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 229 | 
         
             
                          )
         
     | 
| 230 | 
         
             
                        )
         
     | 
| 231 | 
         
            -
                        ( 
     | 
| 232 | 
         
            -
                          ( 
     | 
| 233 | 
         
            -
             
     | 
| 234 | 
         
            -
             
     | 
| 235 | 
         
            -
             
     | 
| 236 | 
         
            -
             
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
             
     | 
| 240 | 
         
            -
             
     | 
| 241 | 
         
            -
             
     | 
| 242 | 
         
            -
             
     | 
| 243 | 
         
            -
             
     | 
| 244 | 
         
            -
             
     | 
| 245 | 
         
            -
             
     | 
| 246 | 
         
            -
                            ( 
     | 
| 247 | 
         
            -
                            ( 
     | 
| 248 | 
         
             
                          )
         
     | 
| 249 | 
         
            -
                          (output):  
     | 
| 250 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 251 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 252 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 253 | 
         
             
                          )
         
     | 
| 254 | 
         
             
                        )
         
     | 
| 255 | 
         
            -
                        ( 
     | 
| 256 | 
         
            -
                          ( 
     | 
| 257 | 
         
            -
             
     | 
| 258 | 
         
            -
             
     | 
| 259 | 
         
            -
             
     | 
| 260 | 
         
            -
             
     | 
| 261 | 
         
            -
             
     | 
| 262 | 
         
            -
             
     | 
| 263 | 
         
            -
             
     | 
| 264 | 
         
            -
             
     | 
| 265 | 
         
            -
             
     | 
| 266 | 
         
            -
             
     | 
| 267 | 
         
            -
             
     | 
| 268 | 
         
            -
             
     | 
| 269 | 
         
            -
             
     | 
| 270 | 
         
            -
                            ( 
     | 
| 271 | 
         
            -
                            ( 
     | 
| 272 | 
         
             
                          )
         
     | 
| 273 | 
         
            -
                          (output):  
     | 
| 274 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 275 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 276 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 277 | 
         
             
                          )
         
     | 
| 278 | 
         
             
                        )
         
     | 
| 279 | 
         
            -
                        ( 
     | 
| 280 | 
         
            -
                          ( 
     | 
| 281 | 
         
            -
             
     | 
| 282 | 
         
            -
             
     | 
| 283 | 
         
            -
             
     | 
| 284 | 
         
            -
             
     | 
| 285 | 
         
            -
             
     | 
| 286 | 
         
            -
             
     | 
| 287 | 
         
            -
             
     | 
| 288 | 
         
            -
             
     | 
| 289 | 
         
            -
             
     | 
| 290 | 
         
            -
             
     | 
| 291 | 
         
            -
             
     | 
| 292 | 
         
            -
             
     | 
| 293 | 
         
            -
             
     | 
| 294 | 
         
            -
                            ( 
     | 
| 295 | 
         
            -
                            ( 
     | 
| 296 | 
         
             
                          )
         
     | 
| 297 | 
         
            -
                          (output):  
     | 
| 298 | 
         
            -
                            (dense): Linear(in_features= 
     | 
| 299 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 300 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 301 | 
         
             
                          )
         
     | 
| 302 | 
         
             
                        )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 303 | 
         
             
                      )
         
     | 
| 304 | 
         
             
                    )
         
     | 
| 305 | 
         
            -
                    (pooler): BertPooler(
         
     | 
| 306 | 
         
            -
                      (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 307 | 
         
            -
                      (activation): Tanh()
         
     | 
| 308 | 
         
            -
                    )
         
     | 
| 309 | 
         
            -
                  )
         
     | 
| 310 | 
         
            -
                )
         
     | 
| 311 | 
         
            -
                (list_embedding_1): FlairEmbeddings(
         
     | 
| 312 | 
         
            -
                  (lm): LanguageModel(
         
     | 
| 313 | 
         
            -
                    (drop): Dropout(p=0.5, inplace=False)
         
     | 
| 314 | 
         
            -
                    (encoder): Embedding(275, 100)
         
     | 
| 315 | 
         
            -
                    (rnn): LSTM(100, 1024)
         
     | 
| 316 | 
         
            -
                    (decoder): Linear(in_features=1024, out_features=275, bias=True)
         
     | 
| 317 | 
         
             
                  )
         
     | 
| 318 | 
         
            -
             
     | 
| 319 | 
         
            -
             
     | 
| 320 | 
         
            -
             
     | 
| 321 | 
         
            -
                    (drop): Dropout(p=0.5, inplace=False)
         
     | 
| 322 | 
         
            -
                    (encoder): Embedding(275, 100)
         
     | 
| 323 | 
         
            -
                    (rnn): LSTM(100, 1024)
         
     | 
| 324 | 
         
            -
                    (decoder): Linear(in_features=1024, out_features=275, bias=True)
         
     | 
| 325 | 
         
             
                  )
         
     | 
| 326 | 
         
             
                )
         
     | 
| 327 | 
         
             
              )
         
     | 
| 
         | 
|
| 328 | 
         
             
              (word_dropout): WordDropout(p=0.05)
         
     | 
| 329 | 
         
             
              (locked_dropout): LockedDropout(p=0.5)
         
     | 
| 330 | 
         
            -
              ( 
     | 
| 331 | 
         
            -
              (linear): Linear(in_features=2816, out_features=13, bias=True)
         
     | 
| 332 | 
         
             
              (loss_function): CrossEntropyLoss()
         
     | 
| 333 | 
         
             
            )"
         
     | 
| 334 | 
         
            -
            2022-10- 
     | 
| 335 | 
         
            -
            2022-10- 
     | 
| 336 | 
         
            -
            2022-10- 
     | 
| 337 | 
         
            -
            2022-10- 
     | 
| 338 | 
         
            -
            2022-10- 
     | 
| 339 | 
         
            -
            2022-10- 
     | 
| 340 | 
         
            -
            2022-10- 
     | 
| 341 | 
         
            -
            2022-10- 
     | 
| 342 | 
         
            -
            2022-10- 
     | 
| 343 | 
         
            -
            2022-10- 
     | 
| 344 | 
         
            -
            2022-10- 
     | 
| 345 | 
         
            -
            2022-10- 
     | 
| 346 | 
         
            -
            2022-10- 
     | 
| 347 | 
         
            -
            2022-10- 
     | 
| 348 | 
         
            -
            2022-10- 
     | 
| 349 | 
         
            -
            2022-10- 
     | 
| 350 | 
         
            -
            2022-10- 
     | 
| 351 | 
         
            -
            2022-10- 
     | 
| 352 | 
         
            -
            2022-10- 
     | 
| 353 | 
         
            -
            2022-10- 
     | 
| 354 | 
         
            -
            2022-10- 
     | 
| 355 | 
         
            -
            2022-10- 
     | 
| 356 | 
         
            -
            2022-10- 
     | 
| 357 | 
         
            -
            2022-10- 
     | 
| 358 | 
         
            -
            2022-10- 
     | 
| 359 | 
         
            -
            2022-10- 
     | 
| 360 | 
         
            -
            2022-10- 
     | 
| 361 | 
         
            -
            2022-10- 
     | 
| 362 | 
         
            -
            2022-10- 
     | 
| 363 | 
         
            -
            2022-10- 
     | 
| 364 | 
         
            -
            2022-10- 
     | 
| 365 | 
         
            -
            2022-10- 
     | 
| 366 | 
         
            -
            2022-10- 
     | 
| 367 | 
         
            -
            2022-10- 
     | 
| 368 | 
         
            -
            2022-10- 
     | 
| 369 | 
         
            -
            2022-10- 
     | 
| 370 | 
         
            -
            2022-10- 
     | 
| 371 | 
         
            -
            2022-10- 
     | 
| 372 | 
         
            -
            2022-10- 
     | 
| 373 | 
         
            -
            2022-10- 
     | 
| 374 | 
         
            -
            2022-10- 
     | 
| 375 | 
         
            -
            2022-10- 
     | 
| 376 | 
         
            -
            2022-10- 
     | 
| 377 | 
         
            -
            2022-10- 
     | 
| 378 | 
         
            -
            2022-10- 
     | 
| 379 | 
         
            -
            2022-10- 
     | 
| 380 | 
         
            -
            2022-10- 
     | 
| 381 | 
         
            -
            2022-10- 
     | 
| 382 | 
         
            -
            2022-10- 
     | 
| 383 | 
         
            -
            2022-10- 
     | 
| 384 | 
         
            -
            2022-10- 
     | 
| 385 | 
         
            -
            2022-10- 
     | 
| 386 | 
         
            -
            2022-10- 
     | 
| 387 | 
         
            -
            2022-10- 
     | 
| 388 | 
         
            -
            2022-10- 
     | 
| 389 | 
         
            -
            2022-10- 
     | 
| 390 | 
         
            -
            2022-10- 
     | 
| 391 | 
         
            -
            2022-10- 
     | 
| 392 | 
         
             
            Results:
         
     | 
| 393 | 
         
            -
            - F-score (micro) 0. 
     | 
| 394 | 
         
            -
            - F-score (macro) 0. 
     | 
| 395 | 
         
            -
            - Accuracy 0. 
     | 
| 396 | 
         | 
| 397 | 
         
             
            By class:
         
     | 
| 398 | 
         
             
                          precision    recall  f1-score   support
         
     | 
| 399 | 
         | 
| 400 | 
         
            -
             
     | 
| 401 | 
         
            -
             
     | 
| 402 | 
         
            -
                   color     0. 
     | 
| 403 | 
         | 
| 404 | 
         
            -
               micro avg     0. 
     | 
| 405 | 
         
            -
               macro avg     0. 
     | 
| 406 | 
         
            -
            weighted avg     0. 
     | 
| 407 | 
         | 
| 408 | 
         
            -
            2022-10- 
     | 
| 
         | 
|
| 1 | 
         
            +
            2022-10-04 14:07:15,489 ----------------------------------------------------------------------------------------------------
         
     | 
| 2 | 
         
            +
            2022-10-04 14:07:15,492 Model: "SequenceTagger(
         
     | 
| 3 | 
         
            +
              (embeddings): TransformerWordEmbeddings(
         
     | 
| 4 | 
         
            +
                (model): BertModel(
         
     | 
| 5 | 
         
            +
                  (embeddings): BertEmbeddings(
         
     | 
| 6 | 
         
            +
                    (word_embeddings): Embedding(119547, 768, padding_idx=0)
         
     | 
| 7 | 
         
            +
                    (position_embeddings): Embedding(512, 768)
         
     | 
| 8 | 
         
            +
                    (token_type_embeddings): Embedding(2, 768)
         
     | 
| 9 | 
         
            +
                    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 10 | 
         
            +
                    (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 11 | 
         
            +
                  )
         
     | 
| 12 | 
         
            +
                  (encoder): BertEncoder(
         
     | 
| 13 | 
         
            +
                    (layer): ModuleList(
         
     | 
| 14 | 
         
            +
                      (0): BertLayer(
         
     | 
| 15 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 16 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 17 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 18 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 19 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 20 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 21 | 
         
             
                          )
         
     | 
| 22 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 23 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 24 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 25 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 26 | 
         
             
                          )
         
     | 
| 27 | 
         
             
                        )
         
     | 
| 28 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 29 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 30 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 31 | 
         
            +
                        )
         
     | 
| 32 | 
         
            +
                        (output): BertOutput(
         
     | 
| 33 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 34 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 35 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 36 | 
         
            +
                        )
         
     | 
| 37 | 
         
            +
                      )
         
     | 
| 38 | 
         
            +
                      (1): BertLayer(
         
     | 
| 39 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 40 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 41 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 42 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 43 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 44 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 45 | 
         
             
                          )
         
     | 
| 46 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 47 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 48 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 49 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 50 | 
         
             
                          )
         
     | 
| 51 | 
         
             
                        )
         
     | 
| 52 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 53 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 54 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 55 | 
         
            +
                        )
         
     | 
| 56 | 
         
            +
                        (output): BertOutput(
         
     | 
| 57 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 58 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 59 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 60 | 
         
            +
                        )
         
     | 
| 61 | 
         
            +
                      )
         
     | 
| 62 | 
         
            +
                      (2): BertLayer(
         
     | 
| 63 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 64 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 65 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 66 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 67 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 68 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 69 | 
         
             
                          )
         
     | 
| 70 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 71 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 72 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 73 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 74 | 
         
             
                          )
         
     | 
| 75 | 
         
             
                        )
         
     | 
| 76 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 77 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 78 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 79 | 
         
            +
                        )
         
     | 
| 80 | 
         
            +
                        (output): BertOutput(
         
     | 
| 81 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 82 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 83 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 84 | 
         
            +
                        )
         
     | 
| 85 | 
         
            +
                      )
         
     | 
| 86 | 
         
            +
                      (3): BertLayer(
         
     | 
| 87 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 88 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 89 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 90 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 91 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 92 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 93 | 
         
             
                          )
         
     | 
| 94 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 95 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 96 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 97 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 98 | 
         
             
                          )
         
     | 
| 99 | 
         
             
                        )
         
     | 
| 100 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 101 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 102 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 103 | 
         
            +
                        )
         
     | 
| 104 | 
         
            +
                        (output): BertOutput(
         
     | 
| 105 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 106 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 107 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 108 | 
         
            +
                        )
         
     | 
| 109 | 
         
            +
                      )
         
     | 
| 110 | 
         
            +
                      (4): BertLayer(
         
     | 
| 111 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 112 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 113 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 114 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 115 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 116 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 117 | 
         
             
                          )
         
     | 
| 118 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 119 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 120 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 121 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 122 | 
         
             
                          )
         
     | 
| 123 | 
         
             
                        )
         
     | 
| 124 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 125 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 126 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 127 | 
         
            +
                        )
         
     | 
| 128 | 
         
            +
                        (output): BertOutput(
         
     | 
| 129 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 130 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 131 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 132 | 
         
            +
                        )
         
     | 
| 133 | 
         
            +
                      )
         
     | 
| 134 | 
         
            +
                      (5): BertLayer(
         
     | 
| 135 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 136 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 137 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 138 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 139 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 140 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 141 | 
         
             
                          )
         
     | 
| 142 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 143 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 144 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 145 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 146 | 
         
             
                          )
         
     | 
| 147 | 
         
             
                        )
         
     | 
| 148 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 149 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 150 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 151 | 
         
            +
                        )
         
     | 
| 152 | 
         
            +
                        (output): BertOutput(
         
     | 
| 153 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 154 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 155 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 156 | 
         
            +
                        )
         
     | 
| 157 | 
         
            +
                      )
         
     | 
| 158 | 
         
            +
                      (6): BertLayer(
         
     | 
| 159 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 160 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 161 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 162 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 163 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 164 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 165 | 
         
             
                          )
         
     | 
| 166 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 167 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 168 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 169 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 170 | 
         
             
                          )
         
     | 
| 171 | 
         
             
                        )
         
     | 
| 172 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 173 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 174 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 175 | 
         
            +
                        )
         
     | 
| 176 | 
         
            +
                        (output): BertOutput(
         
     | 
| 177 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 178 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 179 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 180 | 
         
            +
                        )
         
     | 
| 181 | 
         
            +
                      )
         
     | 
| 182 | 
         
            +
                      (7): BertLayer(
         
     | 
| 183 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 184 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 185 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 186 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 187 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 188 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 189 | 
         
             
                          )
         
     | 
| 190 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 191 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 192 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 193 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 194 | 
         
             
                          )
         
     | 
| 195 | 
         
             
                        )
         
     | 
| 196 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 197 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 198 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 199 | 
         
            +
                        )
         
     | 
| 200 | 
         
            +
                        (output): BertOutput(
         
     | 
| 201 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 202 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 203 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 204 | 
         
            +
                        )
         
     | 
| 205 | 
         
            +
                      )
         
     | 
| 206 | 
         
            +
                      (8): BertLayer(
         
     | 
| 207 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 208 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 209 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 210 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 211 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 212 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 213 | 
         
             
                          )
         
     | 
| 214 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 215 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 216 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 217 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 218 | 
         
             
                          )
         
     | 
| 219 | 
         
             
                        )
         
     | 
| 220 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 221 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 222 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 223 | 
         
            +
                        )
         
     | 
| 224 | 
         
            +
                        (output): BertOutput(
         
     | 
| 225 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 226 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 227 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 228 | 
         
            +
                        )
         
     | 
| 229 | 
         
            +
                      )
         
     | 
| 230 | 
         
            +
                      (9): BertLayer(
         
     | 
| 231 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 232 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 233 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 234 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 235 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 236 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 237 | 
         
             
                          )
         
     | 
| 238 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 239 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 240 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 241 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 242 | 
         
             
                          )
         
     | 
| 243 | 
         
             
                        )
         
     | 
| 244 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 245 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 246 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 247 | 
         
            +
                        )
         
     | 
| 248 | 
         
            +
                        (output): BertOutput(
         
     | 
| 249 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 250 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 251 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 252 | 
         
            +
                        )
         
     | 
| 253 | 
         
            +
                      )
         
     | 
| 254 | 
         
            +
                      (10): BertLayer(
         
     | 
| 255 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 256 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 257 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 258 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 259 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 260 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 261 | 
         
             
                          )
         
     | 
| 262 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 263 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 264 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 265 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 266 | 
         
             
                          )
         
     | 
| 267 | 
         
             
                        )
         
     | 
| 268 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 269 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 270 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 271 | 
         
            +
                        )
         
     | 
| 272 | 
         
            +
                        (output): BertOutput(
         
     | 
| 273 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 274 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 275 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 276 | 
         
            +
                        )
         
     | 
| 277 | 
         
            +
                      )
         
     | 
| 278 | 
         
            +
                      (11): BertLayer(
         
     | 
| 279 | 
         
            +
                        (attention): BertAttention(
         
     | 
| 280 | 
         
            +
                          (self): BertSelfAttention(
         
     | 
| 281 | 
         
            +
                            (query): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 282 | 
         
            +
                            (key): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 283 | 
         
            +
                            (value): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 284 | 
         
            +
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 285 | 
         
             
                          )
         
     | 
| 286 | 
         
            +
                          (output): BertSelfOutput(
         
     | 
| 287 | 
         
            +
                            (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 288 | 
         
             
                            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 289 | 
         
             
                            (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 290 | 
         
             
                          )
         
     | 
| 291 | 
         
             
                        )
         
     | 
| 292 | 
         
            +
                        (intermediate): BertIntermediate(
         
     | 
| 293 | 
         
            +
                          (dense): Linear(in_features=768, out_features=3072, bias=True)
         
     | 
| 294 | 
         
            +
                          (intermediate_act_fn): GELUActivation()
         
     | 
| 295 | 
         
            +
                        )
         
     | 
| 296 | 
         
            +
                        (output): BertOutput(
         
     | 
| 297 | 
         
            +
                          (dense): Linear(in_features=3072, out_features=768, bias=True)
         
     | 
| 298 | 
         
            +
                          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
         
     | 
| 299 | 
         
            +
                          (dropout): Dropout(p=0.1, inplace=False)
         
     | 
| 300 | 
         
            +
                        )
         
     | 
| 301 | 
         
             
                      )
         
     | 
| 302 | 
         
             
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 303 | 
         
             
                  )
         
     | 
| 304 | 
         
            +
                  (pooler): BertPooler(
         
     | 
| 305 | 
         
            +
                    (dense): Linear(in_features=768, out_features=768, bias=True)
         
     | 
| 306 | 
         
            +
                    (activation): Tanh()
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 307 | 
         
             
                  )
         
     | 
| 308 | 
         
             
                )
         
     | 
| 309 | 
         
             
              )
         
     | 
| 310 | 
         
            +
              (dropout): Dropout(p=0.3, inplace=False)
         
     | 
| 311 | 
         
             
              (word_dropout): WordDropout(p=0.05)
         
     | 
| 312 | 
         
             
              (locked_dropout): LockedDropout(p=0.5)
         
     | 
| 313 | 
         
            +
              (linear): Linear(in_features=768, out_features=13, bias=True)
         
     | 
| 
         | 
|
| 314 | 
         
             
              (loss_function): CrossEntropyLoss()
         
     | 
| 315 | 
         
             
            )"
         
     | 
| 316 | 
         
            +
            2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
         
     | 
| 317 | 
         
            +
            2022-10-04 14:07:15,510 Corpus: "Corpus: 70000 train + 15000 dev + 15000 test sentences"
         
     | 
| 318 | 
         
            +
            2022-10-04 14:07:15,510 ----------------------------------------------------------------------------------------------------
         
     | 
| 319 | 
         
            +
            2022-10-04 14:07:15,511 Parameters:
         
     | 
| 320 | 
         
            +
            2022-10-04 14:07:15,511  - learning_rate: "0.010000"
         
     | 
| 321 | 
         
            +
            2022-10-04 14:07:15,511  - mini_batch_size: "8"
         
     | 
| 322 | 
         
            +
            2022-10-04 14:07:15,511  - patience: "3"
         
     | 
| 323 | 
         
            +
            2022-10-04 14:07:15,512  - anneal_factor: "0.5"
         
     | 
| 324 | 
         
            +
            2022-10-04 14:07:15,512  - max_epochs: "2"
         
     | 
| 325 | 
         
            +
            2022-10-04 14:07:15,512  - shuffle: "True"
         
     | 
| 326 | 
         
            +
            2022-10-04 14:07:15,512  - train_with_dev: "False"
         
     | 
| 327 | 
         
            +
            2022-10-04 14:07:15,513  - batch_growth_annealing: "False"
         
     | 
| 328 | 
         
            +
            2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
         
     | 
| 329 | 
         
            +
            2022-10-04 14:07:15,513 Model training base path: "c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair"
         
     | 
| 330 | 
         
            +
            2022-10-04 14:07:15,513 ----------------------------------------------------------------------------------------------------
         
     | 
| 331 | 
         
            +
            2022-10-04 14:07:15,513 Device: cuda:0
         
     | 
| 332 | 
         
            +
            2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
         
     | 
| 333 | 
         
            +
            2022-10-04 14:07:15,514 Embeddings storage mode: cpu
         
     | 
| 334 | 
         
            +
            2022-10-04 14:07:15,514 ----------------------------------------------------------------------------------------------------
         
     | 
| 335 | 
         
            +
            2022-10-04 14:08:50,056 epoch 1 - iter 875/8750 - loss 0.77736243 - samples/sec: 74.10 - lr: 0.010000
         
     | 
| 336 | 
         
            +
            2022-10-04 14:10:25,613 epoch 1 - iter 1750/8750 - loss 0.58654474 - samples/sec: 73.31 - lr: 0.010000
         
     | 
| 337 | 
         
            +
            2022-10-04 14:12:00,221 epoch 1 - iter 2625/8750 - loss 0.49473747 - samples/sec: 74.05 - lr: 0.010000
         
     | 
| 338 | 
         
            +
            2022-10-04 14:13:35,035 epoch 1 - iter 3500/8750 - loss 0.43711232 - samples/sec: 73.87 - lr: 0.010000
         
     | 
| 339 | 
         
            +
            2022-10-04 14:15:08,344 epoch 1 - iter 4375/8750 - loss 0.39713865 - samples/sec: 75.06 - lr: 0.010000
         
     | 
| 340 | 
         
            +
            2022-10-04 14:16:41,989 epoch 1 - iter 5250/8750 - loss 0.36731971 - samples/sec: 74.80 - lr: 0.010000
         
     | 
| 341 | 
         
            +
            2022-10-04 14:18:17,847 epoch 1 - iter 6125/8750 - loss 0.34209381 - samples/sec: 73.07 - lr: 0.010000
         
     | 
| 342 | 
         
            +
            2022-10-04 14:19:52,115 epoch 1 - iter 7000/8750 - loss 0.32256861 - samples/sec: 74.30 - lr: 0.010000
         
     | 
| 343 | 
         
            +
            2022-10-04 14:21:26,066 epoch 1 - iter 7875/8750 - loss 0.30596431 - samples/sec: 74.55 - lr: 0.010000
         
     | 
| 344 | 
         
            +
            2022-10-04 14:23:00,059 epoch 1 - iter 8750/8750 - loss 0.29124524 - samples/sec: 74.51 - lr: 0.010000
         
     | 
| 345 | 
         
            +
            2022-10-04 14:23:00,061 ----------------------------------------------------------------------------------------------------
         
     | 
| 346 | 
         
            +
            2022-10-04 14:23:00,062 EPOCH 1 done: loss 0.2912 - lr 0.010000
         
     | 
| 347 | 
         
            +
            2022-10-04 14:24:52,210 Evaluating as a multi-label problem: False
         
     | 
| 348 | 
         
            +
            2022-10-04 14:24:52,424 DEV : loss 0.06397613137960434 - f1-score (micro avg)  0.973
         
     | 
| 349 | 
         
            +
            2022-10-04 14:24:53,223 BAD EPOCHS (no improvement): 0
         
     | 
| 350 | 
         
            +
            2022-10-04 14:24:54,431 saving best model
         
     | 
| 351 | 
         
            +
            2022-10-04 14:24:55,749 ----------------------------------------------------------------------------------------------------
         
     | 
| 352 | 
         
            +
            2022-10-04 14:26:31,875 epoch 2 - iter 875/8750 - loss 0.15239591 - samples/sec: 72.88 - lr: 0.010000
         
     | 
| 353 | 
         
            +
            2022-10-04 14:28:12,311 epoch 2 - iter 1750/8750 - loss 0.15109719 - samples/sec: 69.74 - lr: 0.010000
         
     | 
| 354 | 
         
            +
            2022-10-04 14:29:49,414 epoch 2 - iter 2625/8750 - loss 0.15017726 - samples/sec: 72.14 - lr: 0.010000
         
     | 
| 355 | 
         
            +
            2022-10-04 14:31:22,789 epoch 2 - iter 3500/8750 - loss 0.14709937 - samples/sec: 75.01 - lr: 0.010000
         
     | 
| 356 | 
         
            +
            2022-10-04 14:32:56,365 epoch 2 - iter 4375/8750 - loss 0.14490590 - samples/sec: 74.87 - lr: 0.010000
         
     | 
| 357 | 
         
            +
            2022-10-04 14:34:29,769 epoch 2 - iter 5250/8750 - loss 0.14379219 - samples/sec: 75.00 - lr: 0.010000
         
     | 
| 358 | 
         
            +
            2022-10-04 14:36:04,122 epoch 2 - iter 6125/8750 - loss 0.14272196 - samples/sec: 74.24 - lr: 0.010000
         
     | 
| 359 | 
         
            +
            2022-10-04 14:37:40,084 epoch 2 - iter 7000/8750 - loss 0.14024151 - samples/sec: 73.00 - lr: 0.010000
         
     | 
| 360 | 
         
            +
            2022-10-04 14:39:15,077 epoch 2 - iter 7875/8750 - loss 0.13892120 - samples/sec: 73.73 - lr: 0.010000
         
     | 
| 361 | 
         
            +
            2022-10-04 14:40:48,611 epoch 2 - iter 8750/8750 - loss 0.13731836 - samples/sec: 74.89 - lr: 0.010000
         
     | 
| 362 | 
         
            +
            2022-10-04 14:40:48,617 ----------------------------------------------------------------------------------------------------
         
     | 
| 363 | 
         
            +
            2022-10-04 14:40:48,617 EPOCH 2 done: loss 0.1373 - lr 0.010000
         
     | 
| 364 | 
         
            +
            2022-10-04 14:42:50,048 Evaluating as a multi-label problem: False
         
     | 
| 365 | 
         
            +
            2022-10-04 14:42:50,277 DEV : loss 0.05747831612825394 - f1-score (micro avg)  0.9844
         
     | 
| 366 | 
         
            +
            2022-10-04 14:42:51,053 BAD EPOCHS (no improvement): 0
         
     | 
| 367 | 
         
            +
            2022-10-04 14:42:52,333 saving best model
         
     | 
| 368 | 
         
            +
            2022-10-04 14:42:54,576 ----------------------------------------------------------------------------------------------------
         
     | 
| 369 | 
         
            +
            2022-10-04 14:42:54,600 loading file c:\Users\Ivan\Documents\Projects\Yoda\NER\model\flair\src\..\models\trans_sm_flair\best-model.pt
         
     | 
| 370 | 
         
            +
            2022-10-04 14:42:57,086 SequenceTagger predicts: Dictionary with 13 tags: O, S-size, B-size, E-size, I-size, S-brand, B-brand, E-brand, I-brand, S-color, B-color, E-color, I-color
         
     | 
| 371 | 
         
            +
            2022-10-04 14:44:29,459 Evaluating as a multi-label problem: False
         
     | 
| 372 | 
         
            +
            2022-10-04 14:44:29,668 0.9816	0.9857	0.9837	0.9679
         
     | 
| 373 | 
         
            +
            2022-10-04 14:44:29,669 
         
     | 
| 374 | 
         
             
            Results:
         
     | 
| 375 | 
         
            +
            - F-score (micro) 0.9837
         
     | 
| 376 | 
         
            +
            - F-score (macro) 0.9843
         
     | 
| 377 | 
         
            +
            - Accuracy 0.9679
         
     | 
| 378 | 
         | 
| 379 | 
         
             
            By class:
         
     | 
| 380 | 
         
             
                          precision    recall  f1-score   support
         
     | 
| 381 | 
         | 
| 382 | 
         
            +
                    size     0.9820    0.9859    0.9839     17988
         
     | 
| 383 | 
         
            +
                   brand     0.9773    0.9860    0.9817     11674
         
     | 
| 384 | 
         
            +
                   color     0.9905    0.9840    0.9872      5070
         
     | 
| 385 | 
         | 
| 386 | 
         
            +
               micro avg     0.9816    0.9857    0.9837     34732
         
     | 
| 387 | 
         
            +
               macro avg     0.9833    0.9853    0.9843     34732
         
     | 
| 388 | 
         
            +
            weighted avg     0.9816    0.9857    0.9837     34732
         
     | 
| 389 | 
         | 
| 390 | 
         
            +
            2022-10-04 14:44:29,670 ----------------------------------------------------------------------------------------------------
         
     |