Commit
·
5a8f38f
1
Parent(s):
b118f8c
Add scripts
Browse files- README.md +54 -0
- config.json +79 -0
- configuration_amdetr.py +113 -0
- model.safetensors +3 -0
- modeling_amdetr.py +67 -0
- pytorch_model.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- lighthouse-emnlp2024/Clotho-Moment
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
---
|
| 8 |
+
# Audio Moment-DETR
|
| 9 |
+
This is a Audio Moment DETR (AM-DETR) proposed in Language-based Audio Moment Retrieval.
|
| 10 |
+
Given the text query, AM-DETR searches for specific audio segments relevant to the query from the long audio recording.
|
| 11 |
+
|
| 12 |
+
## Install
|
| 13 |
+
Installing [Lighthouse](https://github.com/line/lighthouse) is required.
|
| 14 |
+
```bash
|
| 15 |
+
pip install 'git+https://github.com/line/lighthouse.git'
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
## Sample script
|
| 19 |
+
```python
|
| 20 |
+
import io
|
| 21 |
+
import requests
|
| 22 |
+
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import AutoModel, AutoConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
repo_id = "lighthouse-emnlp2024/AM-DETR"
|
| 28 |
+
|
| 29 |
+
config = AutoConfig.from_pretrained(repo_id, trust_remote_code=True)
|
| 30 |
+
config.device="cpu"
|
| 31 |
+
model = AutoModel.from_pretrained(repo_id, config=config, trust_remote_code=True)
|
| 32 |
+
|
| 33 |
+
audio_bytes = io.BytesIO(requests.get('https://github.com/line/lighthouse/raw/refs/heads/main/api_example/1a-ODBWMUAE.wav').content)
|
| 34 |
+
query = "Heavy rain falls"
|
| 35 |
+
|
| 36 |
+
feats = model.encode_audio(audio_path=audio_bytes)
|
| 37 |
+
prediction = model.predict(query, feats)
|
| 38 |
+
for start, end, score in prediction["pred_relevant_windows"]:
|
| 39 |
+
print(f"Moment, Score: {start:05.2f} - {end:05.2f}, {score:.2f}")
|
| 40 |
+
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
## Citation
|
| 45 |
+
```bibtex
|
| 46 |
+
@inproceedings{munakata2025language,
|
| 47 |
+
title={Language-based Audio Moment Retrieval},
|
| 48 |
+
author={Munakata, Hokuto and Nishimura, Taichi and Nakada, Shota and Komatsu, Tatsuya},
|
| 49 |
+
booktitle={ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
|
| 50 |
+
pages={1--5},
|
| 51 |
+
year={2025},
|
| 52 |
+
organization={IEEE}
|
| 53 |
+
}
|
| 54 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoConfig": "configuration_amdetr.AMDETRConfig",
|
| 4 |
+
"AutoModel": "modeling_amdetr.AMDETRPredictorWrapper"
|
| 5 |
+
},
|
| 6 |
+
"a_feat_dim": 768,
|
| 7 |
+
"a_feat_dirs": [
|
| 8 |
+
"features/clotho-moment/clap"
|
| 9 |
+
],
|
| 10 |
+
"a_feat_types": "clap",
|
| 11 |
+
"architectures": [
|
| 12 |
+
"AMDETRPredictorWrapper"
|
| 13 |
+
],
|
| 14 |
+
"aux_loss": true,
|
| 15 |
+
"bsz": 32,
|
| 16 |
+
"ckpt_filename": "best.ckpt",
|
| 17 |
+
"ckpt_filepath": "results/qd_detr/clotho-moment/clap/best.ckpt",
|
| 18 |
+
"clip_length": 1,
|
| 19 |
+
"ctx_mode": "audio_tef",
|
| 20 |
+
"dec_layers": 2,
|
| 21 |
+
"device": "cpu",
|
| 22 |
+
"dim_feedforward": 1024,
|
| 23 |
+
"dropout": 0.1,
|
| 24 |
+
"dset_name": "clotho-moment",
|
| 25 |
+
"ema_decay": 0.9,
|
| 26 |
+
"enc_layers": 2,
|
| 27 |
+
"eos_coef": 0.1,
|
| 28 |
+
"eval_bsz": 100,
|
| 29 |
+
"eval_epoch_interval": 1,
|
| 30 |
+
"eval_log_filename": "val.log",
|
| 31 |
+
"eval_log_filepath": "results/qd_detr/clotho-moment/clap/val.log",
|
| 32 |
+
"eval_log_txt_formatter": "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n",
|
| 33 |
+
"eval_path": "data/clotho_moment/clotho_moment_val_release.jsonl",
|
| 34 |
+
"eval_split_name": "val",
|
| 35 |
+
"giou_loss_coef": 1,
|
| 36 |
+
"grad_clip": 0.1,
|
| 37 |
+
"hidden_dim": 256,
|
| 38 |
+
"input_dropout": 0.5,
|
| 39 |
+
"kwargs": {},
|
| 40 |
+
"label_loss_coef": 4,
|
| 41 |
+
"lr": 0.0001,
|
| 42 |
+
"lr_drop": 400,
|
| 43 |
+
"lw_saliency": 1,
|
| 44 |
+
"max_es_cnt": 200,
|
| 45 |
+
"max_q_l": 32,
|
| 46 |
+
"max_v_l": 75,
|
| 47 |
+
"max_windows": 5,
|
| 48 |
+
"model_ema": false,
|
| 49 |
+
"model_name": "qd_detr",
|
| 50 |
+
"model_type": "amdetr",
|
| 51 |
+
"n_epoch": 100,
|
| 52 |
+
"n_input_proj": 2,
|
| 53 |
+
"nheads": 8,
|
| 54 |
+
"num_queries": 10,
|
| 55 |
+
"num_workers": 4,
|
| 56 |
+
"position_embedding": "sine",
|
| 57 |
+
"results_dir": "results/qd_detr/clotho-moment/clap",
|
| 58 |
+
"saliency_margin": 0.2,
|
| 59 |
+
"seed": 2023,
|
| 60 |
+
"set_cost_class": 4,
|
| 61 |
+
"set_cost_giou": 1,
|
| 62 |
+
"set_cost_span": 10,
|
| 63 |
+
"span_loss_coef": 10,
|
| 64 |
+
"span_loss_type": "l1",
|
| 65 |
+
"t_feat_dim": 768,
|
| 66 |
+
"t_feat_dir": "features/clotho-moment/clap_text",
|
| 67 |
+
"t_feat_dir_pretrain_eval": null,
|
| 68 |
+
"t_feat_type": "clap",
|
| 69 |
+
"torch_dtype": "float32",
|
| 70 |
+
"train_log_filename": "train.log",
|
| 71 |
+
"train_log_filepath": "results/qd_detr/clotho-moment/clap/train.log",
|
| 72 |
+
"train_log_txt_formatter": "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n",
|
| 73 |
+
"train_path": "data/clotho_moment/clotho_moment_train_release.jsonl",
|
| 74 |
+
"transformers_version": "4.51.3",
|
| 75 |
+
"v_feat_dim": 2,
|
| 76 |
+
"v_feat_dirs": null,
|
| 77 |
+
"v_feat_types": null,
|
| 78 |
+
"wd": 0.0001
|
| 79 |
+
}
|
configuration_amdetr.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright $today.year LY Corporation
|
| 3 |
+
LY Corporation licenses this file to you under the Apache License,
|
| 4 |
+
version 2.0 (the "License"); you may not use this file except in compliance
|
| 5 |
+
with the License. You may obtain a copy of the License at:
|
| 6 |
+
https://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
Unless required by applicable law or agreed to in writing, software
|
| 8 |
+
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
| 9 |
+
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
| 10 |
+
License for the specific language governing permissions and limitations
|
| 11 |
+
under the License.
|
| 12 |
+
Moment-DETR (https://github.com/jayleicn/moment_detr)
|
| 13 |
+
Copyright (c) 2021 Jie Lei
|
| 14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 15 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 16 |
+
in the Software without restriction, including without limitation the rights
|
| 17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 18 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 19 |
+
furnished to do so, subject to the following conditions:
|
| 20 |
+
The above copyright notice and this permission notice shall be included in all
|
| 21 |
+
copies or substantial portions of the Software.
|
| 22 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 23 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 24 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 25 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 26 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 27 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 28 |
+
SOFTWARE.
|
| 29 |
+
"""
|
| 30 |
+
from transformers import PretrainedConfig
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class AMDETRConfig(PretrainedConfig):
|
| 34 |
+
model_type = "amdetr"
|
| 35 |
+
|
| 36 |
+
def __init__(
|
| 37 |
+
self,
|
| 38 |
+
seed: int = 2023,
|
| 39 |
+
device: str = "cuda",
|
| 40 |
+
num_workers: int = 4,
|
| 41 |
+
lr: float = 0.0001,
|
| 42 |
+
lr_drop: int = 400,
|
| 43 |
+
wd: float = 0.0001,
|
| 44 |
+
n_epoch: int = 100,
|
| 45 |
+
max_es_cnt: int = 200,
|
| 46 |
+
bsz: int = 32,
|
| 47 |
+
eval_bsz: int = 100,
|
| 48 |
+
grad_clip: float = 0.1,
|
| 49 |
+
max_q_l: int = 32,
|
| 50 |
+
max_v_l: int = 75,
|
| 51 |
+
max_windows: int = 5,
|
| 52 |
+
clip_length: int = 1,
|
| 53 |
+
eval_epoch_interval: int = 1,
|
| 54 |
+
position_embedding: str = "sine",
|
| 55 |
+
enc_layers: int = 2,
|
| 56 |
+
dec_layers: int = 2,
|
| 57 |
+
dim_feedforward: int = 1024,
|
| 58 |
+
hidden_dim: int = 256,
|
| 59 |
+
input_dropout: float = 0.5,
|
| 60 |
+
dropout: float = 0.1,
|
| 61 |
+
nheads: int = 8,
|
| 62 |
+
num_queries: int = 10,
|
| 63 |
+
n_input_proj: int = 2,
|
| 64 |
+
saliency_margin: float = 0.2,
|
| 65 |
+
span_loss_type: str = "l1",
|
| 66 |
+
set_cost_span: int = 10,
|
| 67 |
+
set_cost_giou: int = 1,
|
| 68 |
+
set_cost_class: int = 4,
|
| 69 |
+
span_loss_coef: int = 10,
|
| 70 |
+
giou_loss_coef: int = 1,
|
| 71 |
+
label_loss_coef: int = 4,
|
| 72 |
+
eos_coef: float = 0.1,
|
| 73 |
+
lw_saliency: int = 1,
|
| 74 |
+
ckpt_filename: str = "best.ckpt",
|
| 75 |
+
train_log_filename: str = "train.log",
|
| 76 |
+
eval_log_filename: str = "val.log",
|
| 77 |
+
eval_split_name: str = "val",
|
| 78 |
+
aux_loss: bool = True,
|
| 79 |
+
model_ema: bool = False,
|
| 80 |
+
ema_decay: float = 0.9,
|
| 81 |
+
results_dir: str = "results/qd_detr/clotho-moment/clap",
|
| 82 |
+
ctx_mode: str = "audio_tef",
|
| 83 |
+
v_feat_types: None = None,
|
| 84 |
+
a_feat_types: str = "clap",
|
| 85 |
+
t_feat_type: str = "clap",
|
| 86 |
+
v_feat_dim: int = 2,
|
| 87 |
+
a_feat_dim: int = 768,
|
| 88 |
+
t_feat_dim: int = 768,
|
| 89 |
+
model_name: str = "qd_detr",
|
| 90 |
+
dset_name: str = "clotho-moment",
|
| 91 |
+
train_path: str = "data/clotho_moment/clotho_moment_train_release.jsonl",
|
| 92 |
+
eval_path: str = "data/clotho_moment/clotho_moment_val_release.jsonl",
|
| 93 |
+
ckpt_filepath: str = "results/qd_detr/clotho-moment/clap/best.ckpt",
|
| 94 |
+
train_log_filepath: str = "results/qd_detr/clotho-moment/clap/train.log",
|
| 95 |
+
eval_log_filepath: str = "results/qd_detr/clotho-moment/clap/val.log",
|
| 96 |
+
v_feat_dirs: None = None,
|
| 97 |
+
t_feat_dir: str = "features/clotho-moment/clap_text",
|
| 98 |
+
a_feat_dirs: list = ['features/clotho-moment/clap'],
|
| 99 |
+
t_feat_dir_pretrain_eval: None = None,
|
| 100 |
+
train_log_txt_formatter: str = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n",
|
| 101 |
+
eval_log_txt_formatter: str = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n",
|
| 102 |
+
**kwargs
|
| 103 |
+
) -> None:
|
| 104 |
+
args_and_values = locals()
|
| 105 |
+
for arg_name, arg_value in args_and_values.items():
|
| 106 |
+
if arg_name != 'self':
|
| 107 |
+
setattr(self, arg_name, arg_value)
|
| 108 |
+
super().__init__(**kwargs)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
if __name__ == "__main__":
|
| 112 |
+
cfg = AMDETRConfig()
|
| 113 |
+
print(cfg)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:752a87a2db7c197970cd108bcc4952fc627d7e91dfe5027d162781ea0b734f3e
|
| 3 |
+
size 28513996
|
modeling_amdetr.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright $today.year LY Corporation
|
| 3 |
+
LY Corporation licenses this file to you under the Apache License,
|
| 4 |
+
version 2.0 (the "License"); you may not use this file except in compliance
|
| 5 |
+
with the License. You may obtain a copy of the License at:
|
| 6 |
+
https://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
Unless required by applicable law or agreed to in writing, software
|
| 8 |
+
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
| 9 |
+
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
| 10 |
+
License for the specific language governing permissions and limitations
|
| 11 |
+
under the License.
|
| 12 |
+
Moment-DETR (https://github.com/jayleicn/moment_detr)
|
| 13 |
+
Copyright (c) 2021 Jie Lei
|
| 14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 15 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 16 |
+
in the Software without restriction, including without limitation the rights
|
| 17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 18 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 19 |
+
furnished to do so, subject to the following conditions:
|
| 20 |
+
The above copyright notice and this permission notice shall be included in all
|
| 21 |
+
copies or substantial portions of the Software.
|
| 22 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 23 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 24 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 25 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 26 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 27 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 28 |
+
SOFTWARE.
|
| 29 |
+
"""
|
| 30 |
+
from typing import Dict, List, Optional
|
| 31 |
+
|
| 32 |
+
import torch
|
| 33 |
+
from transformers import PreTrainedModel
|
| 34 |
+
from lighthouse.feature_extractor.audio_encoder import AudioEncoder
|
| 35 |
+
from lighthouse.feature_extractor.text_encoder import TextEncoder
|
| 36 |
+
from lighthouse.models import BasePredictor
|
| 37 |
+
|
| 38 |
+
from .configuration_amdetr import AMDETRConfig
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class AMDETRPredictorWrapper(BasePredictor, PreTrainedModel):
|
| 42 |
+
config_class = AMDETRConfig
|
| 43 |
+
|
| 44 |
+
def __init__(self, config: AMDETRConfig, feature_name: str="clap") -> None:
|
| 45 |
+
PreTrainedModel.__init__(self, config)
|
| 46 |
+
args = config
|
| 47 |
+
self._clip_len: float = args.clip_length
|
| 48 |
+
self._device: str = args.device
|
| 49 |
+
self._size = 224
|
| 50 |
+
self._moment_num = 10
|
| 51 |
+
|
| 52 |
+
self._model: torch.nn.Module = self._initialize_model(args, args.model_name)
|
| 53 |
+
self._model.eval()
|
| 54 |
+
|
| 55 |
+
self._feature_name: str = feature_name
|
| 56 |
+
self._model_name: str = args.model_name
|
| 57 |
+
|
| 58 |
+
def load_encoders(self) -> None:
|
| 59 |
+
self._vision_encoder = None
|
| 60 |
+
self._audio_encoder: AudioEncoder = self._initialize_audio_encoder(self._feature_name, pann_path=None)
|
| 61 |
+
self._text_encoder: TextEncoder = self._initialize_text_encoder(self._feature_name)
|
| 62 |
+
|
| 63 |
+
@torch.no_grad()
|
| 64 |
+
def encode_audio(self, audio_path: str) -> Dict[str, torch.Tensor]:
|
| 65 |
+
if not hasattr(self, "_audio_encoder") or not hasattr(self, "_text_encoder"):
|
| 66 |
+
self.load_encoders()
|
| 67 |
+
return super().encode_audio(audio_path)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:756a8aaf6db555da8342c2a2483545f4b4c2ab946f731f0f4eed774dd591c1f9
|
| 3 |
+
size 28552082
|