Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- OpenAssistant/oasst1
|
| 5 |
+
- zetavg/ShareGPT-Processed
|
| 6 |
+
- augmxnt/ultra-orca-boros-en-ja-v1
|
| 7 |
+
language:
|
| 8 |
+
- ja
|
| 9 |
+
- en
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
<p align="center">
|
| 14 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/3uLNwKHFwEgT2YQ-BGOiH.png" alt="drawing" width="600"/>
|
| 15 |
+
</p>
|
| 16 |
+
|
| 17 |
+
# How to use
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
### Hugggingface
|
| 21 |
+
```python
|
| 22 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 23 |
+
import torch
|
| 24 |
+
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B-chat-plus")
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B-chat-plus", torch_dtype=torch.bfloat16, device_map="auto")
|
| 27 |
+
|
| 28 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 29 |
+
|
| 30 |
+
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
|
| 31 |
+
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
|
| 32 |
+
|
| 33 |
+
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
|
| 34 |
+
|
| 35 |
+
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
### VLLM
|
| 40 |
+
```python
|
| 41 |
+
from vllm import LLM, SamplingParams
|
| 42 |
+
|
| 43 |
+
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
|
| 44 |
+
llm = LLM(model="lightblue/karasu-7B-chat-plus")
|
| 45 |
+
|
| 46 |
+
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
|
| 47 |
+
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
|
| 48 |
+
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
|
| 49 |
+
prompts = [prompt]
|
| 50 |
+
|
| 51 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 52 |
+
for output in outputs:
|
| 53 |
+
prompt = output.prompt
|
| 54 |
+
generated_text = output.outputs[0].text
|
| 55 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Base checkpoint
|
| 61 |
+
[lightblue/karasu-7B](https://huggingface.co/lightblue/karasu-7B)
|
| 62 |
+
|
| 63 |
+
# Training datasets (total ~7B)
|
| 64 |
+
The same as the 'plus' checkpoint, but with about 6K refusals ("申し訳ありませんが、。。。") filtered out from the category dataset
|
| 65 |
+
* Lightblue's suite of Kujira datasets (unreleased)
|
| 66 |
+
* Lightblue's own question-based datasets (unreleased)
|
| 67 |
+
* Lightblue's own category-based datasets (unreleased)
|
| 68 |
+
* [OASST](https://huggingface.co/datasets/OpenAssistant/oasst1) (Japanese chats only)
|
| 69 |
+
* [ShareGPT](https://huggingface.co/datasets/zetavg/ShareGPT-Processed) (Japanese chats only)
|
| 70 |
+
* [augmxnt/ultra-orca-boros-en-ja-v1](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) (['airoboros', 'slimorca', 'ultrafeedback', 'airoboros_ja_new'] only)
|
| 71 |
+
|
| 72 |
+
# Developed by
|
| 73 |
+
|
| 74 |
+
<a href="https://www.lightblue-tech.com">
|
| 75 |
+
<img src="https://www.lightblue-tech.com/wp-content/uploads/2021/10/LBlogo-scaled.jpg" alt="Lightblue technology logo" width="400"/>
|
| 76 |
+
</a>
|
| 77 |
+
|
| 78 |
+
### Engineers
|
| 79 |
+
Peter Devine
|
| 80 |
+
|
| 81 |
+
Sho Higuchi
|
| 82 |
+
|
| 83 |
+
### Advisors
|
| 84 |
+
Yuuki Yamanaka
|
| 85 |
+
|
| 86 |
+
Atom Sonoda
|
| 87 |
+
|
| 88 |
+
### Dataset evaluator
|
| 89 |
+
Renju Aoki
|